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Abstract: Explaining the origins of language is a key challenge in understanding ourselves as a
species. We present an empirical framework that draws on synergies across fields to facilitate
robust studies of language evolution. The approach is multi-faceted, seeing language emergence
as dependent on the convergence of multiple capacities, each with their own evolutionary
trajectories. It is explicitly bio-cultural, recognising and incorporating the importance of both
biological preparedness and cultural transmission, as well as interactions between them. We
illustrate this approach through three case studies examining the evolution of different facets
involved in human language (vocal production learning, linguistic structure, social underpinnings).
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Main Text: Human language is a distinctive trait of our species, yet its origins are still not
understood (/—4). The lack of any fossil record of the first language(s), together with many
unknowns about human evolution and animal communication have led some to conclude that this
question is scientifically intractable (5). We propose instead that studying language evolution lies
well within the scope of scientific enquiry, when new sources of data and theoretical perspectives
are incorporated. We present an empirical bio-cultural framework for research on language
evolution, applying it to three case studies, each examining a different facet involved in human
language. Our aim is neither to comprehensively review the many existing theories, nor to
advocate our own special one, but to set an agenda for future interdisciplinary research,
highlighting promising avenues.

This approach is multi-faceted in seeing language emergence as dependent on convergence of
multiple capacities (physical, cognitive, social, cultural), each with its own developmental and
evolutionary trajectories (see (6, 7)). Proposed facets include those related to production and
perception of signals (e.g., vocal learning), systematic organisation of language (e.g., linguistic
structure), and communicative motivations (e.g., aspects of social behaviour). A facet does not
have to be unique to humans or to language to offer explanatory value: Like the evolution of other
complex biological systems (e.g., the eye), the emergence of language can be explained by
modifications and recombination of ancestral infrastructures, and exaptation of existing structures
(8—10). This reflects a move away from “silver bullet” views of language evolution (e.g. (11, 12)),
where human uniqueness is defined by just one explanatory factor (e.g., a single genetic mutation).
Although such accounts have been historically prolific, persisting in some academic discourse and
popular science writing, they are untenable in light of modern biology. Considerable evidence
from multiple sources indicates that no one thing itself was enough to “give us language” or “make
us human” (/3—15). The multi-faceted perspective calls for empirical investigations of larger
historical windows. While common wisdom was that language is unique to anatomically modern
humans, appearing on the Homo sapiens lineage within the past 50-150kyr (e.g. (11, 12)),
contemporary data suggest that deeper evolutionary timescales, of hundreds of thousands (perhaps
millions) of years, are more plausible (/3, 16—18). Even if the language system as we know it in
present-day humans only emerged recently, different facets may have evolved over longer
timescales, under different selective pressures.

Our approach is also bio-cultural, recognizing and incorporating both biological preparedness and
cultural processes, and the interactions between them, as key factors in language emergence.
Understanding biological preparedness, including innate learning mechanisms and biases, is
necessary to explain the uniqueness of human language, and helps guide comparative research on
non-human species. However, no human infant develops a fully structured language in isolation:
such languages arise only after extended social and communicative interaction (e.g., (19, 20)).
Over generations, learners progressively systematize language through communication and
cultural transmission (2/-23), processes shaped by properties of the individual and the community
(24-26). Computational simulations, experiments, and real-word cases of emergence identified
specific cultural processes necessary for structured language to emerge. One reason non-human
species lack human-like language may be their limited biological capacity to support these cultural
processes. Importantly, biology and culture can interact in complex non-intuitive ways. For
example, the emergence of more complex communication systems can increase selective pressure
on the cognitive mechanisms required to learn and produce complex signals. This could result in
virtuous cycles of gene-culture coevolution (Fig. 1), making iterated bio-cultural processes central
to understanding language emergence. Crucially, both classes of phenomena, biological and
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cultural, along with their interactions, can be empirically investigated in humans, non-human
animals, and simulated/artificial agents (27).
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Figure 1. Gene-culture co-evolution model. Interacting processes operating on different timescales, from
milliseconds to millennia, shape language emergence. (A) Processes of language use operate at the shortest
timescale, as individuals comprehend and produce utterances in ongoing conversation. Learning to form these
utterances (learning sounds, words, and rules) happens over a lifetime of exposure to the language of the community.
Zooming out further, the structure of a specific language emerges and changes through cultural evolution, as
knowledge of language is passed from one generation to the next. Finally, the cognitive and anatomical machinery
that allows humans to learn and use language has been subject to genetic evolution over the course of human evolution.
The processes of biological and cultural evolution interact to produce a dual-inheritance system (28, 29). Features of
languages are inherited culturally, and the mechanisms that support such cultural inheritance are themselves inherited
genetically. These processes may interact in complex and interesting ways, studied using mathematical and
computational models that include all three timescales: individual learning and use; cultural evolution; biological
evolution. (B) One prominent approach, iterated Bayesian learning (30, 31) treats learning as a process of inductive
inference, combining utterances that the learner observes with a prior bias favouring particular types of languages.
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Cultural evolution is modelled as a process in which the languages inferred by one generation provide data observed
by the next generation of learners. Iterated Bayesian learning allows us to compute expected results of cultural
evolution for any hypothesised prior bias learners might have, along with a model of how language is used for
communication (32). This approach has been extended to the full dual-inheritance model by assuming that priors for
learners are shaped by their genes, and these genes are selected based on communicative effectiveness of the
individuals in the population (33). One striking finding is that the existence of cultural evolution tends to weaken
inductive biases in language learning (33). Cultural evolution amplifies weak biases in individual learners, such that
weak biases have the same outcome at the population level as strong constraints would. If strong biases are costly to
maintain (e.g. by being more subject to mutation pressure), then weak biases are the inevitable consequence. This is
surprising given previous work on the evolution of learning, which suggests the opposite: that learning can make
evolution of innate constraints more likely (34).

Bio-cultural and multi-faceted perspectives are increasingly appreciated in discussions of language
evolution, but there is a need to integrate them in a unifying framework, and show concrete
examples of how that advances understanding. We demonstrate application of an integrated
framework through three case studies, targeting different facets important for language emergence:
(1) Vocal production learning: the ability to modify vocalisations based on experience, critical for
acquiring spoken language; (2) Language structure: the systematic ways in which linguistic
elements relate to one another, underlying the productivity of human language; and (3) Social
underpinnings: behaviours and processes that facilitate social interaction, enabling cultural
transmission of language. These are not claimed as the sole or primary facets relevant to language
evolution, but used to illustrate the value of a bio-cultural framework.

Case study 1: Vocal production learning

Human language is inherently multi-modal, expressible via speech, sign, writing or touch (335, 36).
However, when available, speech is the primary modality across societies. Its acquisition depends
on auditory-guided vocal production learning (VPL): the ability of an organism to flexibly enlarge
and modify its repertoire of vocalisations based on auditory experiences (37, 38). VPL is critical
for learning the sounds and open-ended vocabulary of language. Non-human primates appear
much more limited than humans in their capacity to produce new vocalisations, but these abilities
have emerged in other species, including subsets of birds, bats, cetaceans, pinnipeds, and elephants
(38). There is increasing evidence that the independent appearance of VPL on different branches
of the evolutionary tree involves deep homology (39, 40), a phenomenon where convergently
evolved traits recruit similar underlying genetic regulatory mechanisms across species (47). This
aligns with the idea that some facets of language rely on ancient genetic and neural infrastructures,
modified and recombined to enable more complex systems/abilities. The relevance of deep
homology for understanding VPL is illustrated by studies of the FOXP2 gene.

FOXP2 was originally discovered by using human genetics tools (Table 1) to investigate the
biological bases of developmental speech and language disorders (42). Given adequate exposure
to spoken language (and in absence of sensory disorders), most children become proficient
language users within the first years of life. However, there are unusual cases where this process
goes awry. Before the advent of molecular methods, studies comparing identical and non-identical
twins, and documenting recurrence of cases within families, suggested that genetic factors play a
role in these otherwise unexplained disorders, without pinpointing the genes involved (43). In
2001, a rare pathogenic DNA variation in FOXP2 was found to disturb development of the
coordinated sequencing of mouth and face movements underlying proficient speech (childhood
apraxia of speech) in a large family, known as the KE family (44) (Fig. 2A). Multiple independent
cases of people carrying FOXP2 disruptions were since reported, with developmental speech
deficits being the most consistent consequence (45).
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Table 1: Identifying genetic links to language through genomic studies in modern humans. Researchers can investigate genetics of relevant pathologies (childhood
apraxia of speech, developmental language disorders, etc.) by identifying genetic correlates of individual differences in language-related skills in the general population,
exploiting advances in molecular methods and analytic approaches (46).

polymorphisms
(SNPs) found at >1%
frequency in general
population. Any one
SNP by itself has little
impact, but
combinations of
many such variants
across the genome
may jointly explain a
significant proportion
of trait variance.

technologies, like
DNA microarrays,
make it possible to
capture allelic
variation at millions
of SNPs in large
samples.

These technologies
fuelled the rise of
genome-wide
association studies
(GWASs) that
systematically screen
vast numbers of
SNPs, testing each for
a relationship with a
trait of interest.

variation to a disorder (or categorical trait).
GWAS designs can also identify associations
of SNPs with individual differences in
guantitative traits. Since the effect size of
one SNP may be tiny, cohorts of tens (even
hundreds) of thousands of people are
needed to give adequate power while
adjusting for substantial multiple-testing.

guantitatively assessed reading-
and language-related skills,
involving <34,000 participants,
researchers could capture up to
26% of trait variability with
common DNA variation (50).

Studies of genetic associations with
language-related traits can be extended to
individual differences in brain structure and
function, assessed with neuroimaging. Effect
sizes of individual SNPs are small even for
traits measured with MRI (51). With
availability of neuroimaging and DNA data in
large biobanking resources it is now possible
to carry out GWAS studies of neural circuits
involved in language processing.

GWAS investigations of structural
and functional connectivity in the
brains of ~30-32,000 participants
in the UK Biobank have given
new insights into how genetic
variants contribute to language-
related circuits in the human
brain (52, 53).

Type of DNA Biological impact Molecular methods Typical study designs Examples from the literature Linking to evolution
variation
Rare gene Rarely, a change at a Advances in next- Pathogenic variants can be identified by The first rare gene variants in The evolutionary history of
disruptions single genetic locus generation analysing DNA of relatives in childhood apraxia of speech were | genes implicated in
can be sufficient to sequencing now allow | multigenerational families where multiple discovered by studying a three- speech/language disorders
substantially derail rapid reading of individuals have a developmental generation family, before the can be retraced, by
language almost all of a speech/language disorder. advent of next-generation comparing to versions
development. person’s genome at sequencing (44). found in extinct archaic
high resolution at a A | hi i d Whol o hominins and extant apes,
fraction of the cost of comp emente?ry approach investigates de ole geno”,]e sequ.encmg n and testing for evidence of
classical methods novo cases of disorder (where speech apraxia has since Darwinian selection at
parents/s!blmgs are_unaffected) to identify |c!ent|f|_ed pathoger?lc de nO\{o these genomic loci on the
pathogenic DNA variants that are only disruptions of multiple candidate . .
. ) . ) lineage leading to Homo
present in the affected child. genes, with regulatory roles in .
. sapiens (47, 48).
early brain development (49).
Common Many studies focus High-throughput low- | One GWAS design is a case/control study In a multicohort GWAS study of Findings on genetic
variation on single-nucleotide cost genotyping assessing contributions of common DNA individual differences in contributions to individual

differences in language-
related skills and/or neural
infrastructure in living
humans can be integrated
with information about
evolutionary signatures
across the genome, over a
range of different
timescales in primate and
hominin history. For
example, a UK Biobank
study used this approach to
uncover effects of human-
gained regulatory elements
on left-hemisphere brain
regions related to speech,
among other findings (47,
48).
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Figure 2. Investigating evolution of vocal production learning with tools of molecular genetics: FOXP2 as an
example. (A) The starting point was a three-generation family, the KE family, in which half of the relatives (shaded
symbols) were affected by a neurodevelopmental disorder primarily involving childhood apraxia of speech,
accompanied by expressive and receptive language deficits (top). The affected relatives carried a change of one DNA
letter (nucleotide) in the FOXP2 gene (44). This small change in DNA alters the amino-acid sequence, and hence
shape, of a key part of the regulatory protein that FOXP2 encodes, stopping it from functioning in its normal way.
Advances in DNA sequencing led to identification of >28 additional individuals (from 17 families) carrying different
pathogenic single-nucleotide variants of FOXP2, with problems in speech development being the most common
feature found in these cases (45). As shown in the bottom of the panel, while pathogenic variants were sometimes
inherited from affected parents, in many of the cases they arose de novo in children with unaffected parents. (B)
Comparisons of DNA sequences across different species (comparative genomics) identified versions of FOXP2 in
distantly related vertebrates including mammals, birds, reptiles, fish, and amphibians (40, 54), showing that the gene
has a deep evolutionary history. Against this background, integration of findings from extant apes and extinct archaic
hominins revealed that changes in the amino-acid sequence of the encoded protein occurred on the Homo lineage after
splitting from chimpanzees/bonobos (55). (C) Researchers engineered mouse models that carry the same pathogenic
variant that causes speech problems in the KE family. Investigations of these mice reported motor-skill learning
deficits (56), reduced plasticity in the striatum (part of the basal ganglia) (57), disturbed intracellular ‘protein motors’
in striatal neurons (58), and loss of neuronal homeostasis in deep-layer cortical neurons (59) among other findings.
(D) Moving to songbirds, lentivirus-mediated RNA interference has been used to reduce activity of FoxP2 (the avian
equivalent of FOXP2) in Area X, a key nucleus in the basal ganglia of male zebra finches. Such studies uncovered
effects of the gene on song learning and the control of song variability, potentially mediated by changes in
dopaminergic signalling (60—62). (E) When researchers used genetic manipulations to introduce hominin amino-acid
substitutions of FOXP2 into mice, they observed regional changes in dopamine levels and increased plasticity in the
striatum (63). Motor-skill learning and vocal behaviours of adult male mice were unaffected according to one study
(64), but later investigations of female and male vocalisations in social contexts found that the partially “humanized”
mice used higher frequencies and more complex syllable types (65). Another study of these mice uncovered different
patterns of striatal-dependent stimulus-response association learning (66). Overall, this suite of human and animal
model studies shows how genes involved in VPL can be empirically investigated across species to give new insights
into evolutionary pathways.
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Once FOXP2 was identified in humans, researchers looked for versions of the gene in other
species, retracing its evolutionary history. Cross-species DNA comparisons (Fig. 2B) revealed that
FOXP2 is not unique to humans, but evolutionarily ancient, with similar versions in disparate
vertebrates including mammals, birds, reptiles, fish, and amphibians (40, 54). There is high
species-wide concordance in the places where this gene is active in the developing/adult central
nervous system, including in subsets of neurons in the cortex/pallium, basal ganglia, thalamus, and
cerebellum. These findings suggested that contributions of FOXP2 to human speech may be built
on ancient evolutionary pathways involved in motor-skill learning and vocal behaviours (67). Such
deep evolutionary conservation means that genetic manipulations of versions of FOXP2 in non-
human species can help elucidate its functions, and how these influence brain plasticity and
behaviour (68, 69).

For instance, though mice have very limited VPL capacities (70), valuable insights were gained
from mouse models engineered to carry FOXP?2 disruptions known to cause speech disorders in
humans (Fig. 2C). Mice carrying the pathogenic variant of the KE family show motor-skill
learning deficits, and altered neuronal properties in basal ganglia and cortex (56—59), among other
findings. Investigating non-human animals that are vocal learners, such as songbirds, is even more
revealing (Fig, 2D). Male zebra finches sing structured songs comprising vocal elements
(syllables) arranged in a stereotyped sequence, which they learn as juveniles by listening to adult
males (69). During this developmental period of plasticity, FoxP2 (the avian version of FOXP2)
has elevated activity in Area X, a basal ganglia structure that is crucial for VPL (69).
Experimentally reducing FoxP2 Area-X activity interferes with song-learning and variability,
potentially mediated by disturbed dopaminergic signalling (60—62). Thus, impacts of this gene on
brain plasticity linked to sensorimotor functions and motor-skill learning may have been
independently recruited towards VPL in disparate species (i.e. supporting speech in humans and
song in zebra finches). Most recently, genome-wide investigations of >200 mammals with
different vocal-learning capacities pinpointed multiple additional genetic loci as candidates for
cross-species involvement in VPL (77).

Identifying genes contributing to VPL across species allows researchers to use a transformative
new data source to test hypotheses about language evolution: ancient DNA. In the last fifteen years,
it became possible to obtain high-quality sequence information from nuclear genomes of
Neanderthals and Denisovans: extinct hominins that shared with modern humans a most recent
common ancestor ~600kyr ago (72, 73). These archaic hominins existed until a few tens of
thousands of years ago, temporarily overlapping with Homo sapiens at sites across Eurasia (74).
Analysing ancient genomes enables detection of DNA variants that arose in modern humans after
our split from Neanderthals and Denisovans (75). It also enables detection of variants that we share
with archaic hominins, but that are distinct from those in extant non-human apes. These more
ancient variants arose after our split from chimpanzees/bonobos ~6 million years ago, but before
the split between modern and archaic humans (76). Applied to FOXP2, this approach identified
two amino-acid changes in the protein that it encodes, both arising on the Homo lineage during the
6Myr-600kyr time window (55). Researchers used genetic manipulations to introduce the hominin
amino-acid substitutions into mice, observing varied effects on vocal behaviours and basal ganglia
functions (63—-66) (Fig. 2E). Thus, by identifying evolutionary variants in genes implicated in
facets of language and introducing them into non-human animals, we can investigate whether these
variants affect brains and behaviour in ways that might be relevant to language emergence. Despite
this promise, we stress that no single genetic change is by itself sufficient to yield a vocal-learning
brain (77).
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Evolution acts not only through genetically-specified changes to protein structure and function,
but also by modifying where and when genes/proteins are active in development and adulthood
(78, 79). These effects are mediated by a wide variety of regulatory elements in the genome. Many
of the DNA variants distinguishing us from other extant apes and extinct hominins may lie within
such elements. For example, among primates FOXP2 shows human-specific expression in
microglia, the primary immune cells of the brain, although the regulatory elements responsible for
this specificity are not yet described (80). Moreover, innovations in paleoepigenetics take
advantage of degradation processes in ancient DNA to reconstruct patterns of methylation, a
chemical modification that helps mediate changes in gene activity without changing DNA
sequence itself. This approach revealed changes in gene regulation differentiating
Neanderthals/Denisovans from modern humans (87). Several of these modern human-specific
gene-expression changes are associated with genes that affect the face and voice, and may underlie
characteristics that are unique to modern humans (82).

Additional insights into VPL evolution come from considering developmental processes. Take
babbling: an early, self-initiated form of vocal production in infants that starts as simple and
repetitive verbal “play” but gradually approaches a mature form. Babbling-like behaviours have
been documented in humans, songbirds, parrots (83, 8§4), and vocal-learning bats (835, 86) but are
not common in species lacking VPL. Manual “babbling” is seen in hearing and deaf human babies
exposed to signed language from birth (87, 88), illustrating both the multimodality of language
and the role of babbling in language acquisition. Deaf babies also babble vocally, but this babbling
does not progress normally when appropriate input models are inaccessible (§9), demonstrating
how biological preparedness and environmental input interact in language learning.

Babbling (termed ‘subsong’ in birds) is self-generated and self-rewarding, occurring without
immediate environmental triggers or exogenous rewards. Thus, part of the biological preparedness
for VPL includes an endogenous reward system, making vocal play enjoyable to the young
organism without feedback from parents or others. Although little is known about the underlying
circuity in humans, recent evidence implicates endogenous reward in songbird vocal behaviours.
Avian song learning begins with a sensory learning period in which the bird stores auditory
templates of exemplars of its species’ song. This involves an endogenously rewarding listening
process (90, 91): juveniles selectively attend to and memorize songs of their own species indicating
that hearing them is intrinsically rewarding (97). Endogenous reward is key during the subsequent
sensory-motor learning period when spontaneous subsong is gradually adjusted, without external
feedback, to approach stored adult template(s) (92—96). Vocal practice correlates temporally with
neural expression of opioid markers and increased activity in reward systems (92), and blocking
dopamine receptors in the basal ganglia in young zebra finches impairs song copying (95). Later
in development, both infant babbling and bird subsong are impacted by social reinforcement (e.g.
(96)) but the early self-reinforcing stages are required to provide raw material for later,
exogenously directed, learning. Evolution of VPL may therefore depend both on changes to neural
circuits involved in learning and also those underlying endogenous reward.

Case study 2: The emergence of linguistic structure

Human language shows systematic structure at multiple levels and of multiple kinds. Elements can
be combined in productive ways, with the meaning of larger units composed of the meanings of
their parts (e.g., cat — cats — big cats). There is ongoing debate on how to define and quantify this
systematicity. Here, we classify a behaviour as systematic when it can be described more concisely
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as a set than as a collection of individual instances. “Grammars” in linguistics (in the most theory-
neutral use of that term) refer to these shorter descriptions, and are possible because language is
systematic. For example, it is more concise to describe formation of the regular English plural
using the rule “add -s to the singular form” than to list all plural forms. While prevalent in human
language, systematicity is rare in the vast majority of communication systems in nature. An
extensive literature investigates neural correlates of systematic language structure (see e.g. (35,
97)); comparing those circuits across humans and non-human primates offers ways to study their
evolution (e.g. (98—100)). While illuminating, this literature leaves open how linguistic structure
first came about.

Over the past 25 years, various experimental and computational methods have been developed to
study origins of systematic linguistic structure (22, 101-104), and to ask how that structure is
shaped by cognitive and communicative pressures. Specifically, language must serve the
communicative needs of interacting language users, and be learnable by subsequent generations
of language users. Because language is culturally transmitted (passed on by being repeatedly
learned and used by multiple generations), its structure is impacted by the interplay of
communicative and cognitive forces. To illustrate, we here focus on one feature: combinatoriality,
the fact that language has units that can be recombined, at multiple levels of linguistic analysis
(24, 105—-108). For instance, sounds can be combined into words, and words can be combined to
form sentences.

How did this combinatoriality emerge? We have no access to, or record of, hominin
communication systems preceding modern human languages. However, insights can come from
real-world cases of emergence (/09) and lab-based studies recreating evolutionary processes in
miniature (25, 110, 111). Two real-world settings illuminate the pressures and biases impacting
the emergence of linguistic structure in modern-day humans. One is homesign: gesture systems
created by individuals whose hearing loss prevented them from accessing spoken language and
who were not exposed to sign language (//2). Another is emerging sign languages, where novel
signed languages develop in communities with a high proportion of deaf individuals, lacking
access to an established signed language. An influential example is Nicaraguan Sign Language
(NSL), which spontaneously emerged when homesigners were first brought together in the mid-
1980s (/13). Examining how linguistic structure in such systems changes over time illustrates how
individual learning and cultural transmission impact the emergence of structure.

Researchers have documented and compared linguistic structure in solo language creators
(homesign); in homesigners who came together and formed the first NSL cohort (NSL1); and in
subsequent cohorts of signers who entered the community after the language began and were thus
exposed to a language model (NSL2, NSL3, etc.). Some linguistic structural properties are
observed in solo creators, irrespective of the specific cultural environment they were raised in.
Child homesigners in the USA, China, Turkey, and Nicaragua use gestures to refer to objects,
actions, and attributes, and combine them into strings characterised by consistent word order. For
example, gestures for the object of an action appear before gestures for the action, yielding ‘grape-
eat’ as opposed to ‘eat-grape’ (112, 114) (Fig. 3). These same properties appear across societies,
without exposure to linguistic input, indicating shared human cognitive biases (e.g. hierarchical
structure: (/75)). Other properties emerge only after homesigners come together to form NSLI
(e.g. a stable lexicon: (/14)), highlighting the importance of communication with others in shaping
linguistic structure. Still other linguistic properties are not produced by homesigners or in NSL1,
but tend to appear only after the emerging sign languages are transmitted to new learners. For
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example, spatial modulations are rare in NSL1, but commonly used to indicate shared reference in
NSL2 (19).

A well-studied feature of NSL, relevant to combinatoriality, involves how complex motion events
are conveyed. Consider a ball bouncing down a hill. In early NSL cohorts, both the ball’s path
(downwards) and its movement manner (bouncing) are typically conveyed simultaneously ((//3)
but see (/16)). However, later cohorts typically segment path and manner into separate parts,
yielding a more combinatorial flexible system. Thus, transmission from one cohort to another
seems important for building and enhancing combinatoriality. In an experimental analog of the
homesign situation, non-signing participants are asked to convey meanings with gesture and no
speech (/17). When presented with complex motion events possessing manner and path
components, participants prefer to convey both aspects simultaneously even if expressed
separately in their spoken language (//8). However, gestures and vocalisations beginning as
holistic (e.g., simultaneously expressing motion and speed) become more segmented and
linearised during ongoing dyadic communication (//9-121).

Experiments can recreate processes of cultural evolution using a paradigm called iterated learning.
In these studies, a participant learns from the output of a previous participant in the experiment,
creating multiple simulated “generations” (22). When silent gestures get transmitted in this way,
there is a learning-driven preference for segmented manner and path. This preference is amplified
over generations (as in NSL2 (//3)) so that more systematic and combinatorial behaviours emerge
(119, 121). More generally, productive units emerge during dyadic and group communication
paradigms (25, 120, 122, 123), a process enhanced by learning and transmission (32). The
combined findings illustrate that systems starting as a collection of wholes are gradually segmented
and analysed into productive parts, consistent with evolutionary approaches proposing a holistic
origin for language (124, 125). Further evidence for the role of whole-to-part learning comes from
first language acquisition (/26, 127) and homesign creation (/28, 129), where learners discover
parts from unanalyzed wholes (e.g. Ididit > I did it, (130)), in ways that facilitate the mastery and
emergence of systematic structure ((/31, 132), Fig. 3).

Language development Language emergence Animal communication
Homesign Humpback Whale song
One category Two categories
( N -\J
/ E : l'\_:' 1 .\.L_'_
! f’ ! f‘ THER A
Bl &
= = = 5%y j:'u--uj i,:u. -
Sound ...-:lll [ ] -\:’Illl [ [ |
% % % elements \T' "Dips in TP
/] Detected IS, EEN— E—
9~ / /T / units : :
A A\ PN J

Figure 3. Finding the right units. One of the challenges in studying communication in children and non-human
animals is zeroing in on the right unit of analysis. This is challenging because the units we use to code data are
influenced by hypotheses (explicit or implicit (/33)), often based on our own categories. For example, when we
describe early child language, we typically attribute individuated words to the child (left-hand panel). But we might
be wrong—a child might use a larger unit, treating several words as a single “chunk” (727, 134). Infants extract single
word units from the speech they hear, but they also extract larger units containing more than one lexical word (726,
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130). In fact, starting from larger units plays an important role in learning linguistic structure, particularly in learning
grammatical relations between words (126, 127, 131, 132), and in creating linguistic structure (/29). One way to
validate the categories we use is to find systematic patterns based on those categories, providing indirect evidence for
the categories, and also for their level of representation. For instance, using semantic roles (patient, act, recipient, etc.)
to categorize homesigners’ gestures results in systematic orderings (patient-act, patient-recipient, act-recipient), which
validates coding at this level (/35). But sometimes our coding system fails to produce systematic patterns. This may
be the time to scrap the system and start again, coding at a level smaller than the one previously used (middle panel).
For example, homesigners could vary thumb-to-finger distance so that the handshape in the gesture for banana-
grasping is distinct from that in the gesture for spoon-grasping (as they are when these objects are actually grasped).
Alternatively, homesigners could use the same handshape in both gestures, introducing one larger category for
grasping objects <l-inch in diameter. To discover the homesigner’s categories, we need to code in units that are
smaller than the units on which those categories are based; otherwise, the categories may be created by us, not the
child (128, 136). When we seek the right units in non-human communication (e.g., gestures in great apes (/37)), the
challenge is greater, because we have limited insight into the categories relevant to non-human animals ((/38) and
must validate the categories in the animal itself (e.g., by using playback experiments, (/39)). Nonetheless, the
approach of seeking out coherent patterns can also help reveal units in animal communication (righthand panel). For
example, using transitional probabilities between syllables to segment humpback whale song (a cue used by human
infants to segment speech (/40)) uncovered statistically coherent sub-sequences whose frequency distribution
followed a particular power law, also found in all human languages (/47). This points to a striking similarity between
two evolutionarily distant species (whales and humans), united by having culturally transmitted communication
systems. Debates about how to detect the appropriate units continue (/42), with new perspectives coming from
machine learning (/43). In general, allowing for units at multiple levels of representation provides insight into
structure in child language, homesign, and animal communication (/44).

Real-world language emergence and lab-based studies necessarily involve humans with modern
brains, but are nevertheless informative. Linguistic features evident in homesign provide insights
into products of biological evolution. Properties that homesigners fail to develop, but are found in
emerging sign languages, are good candidates for ones that require cultural evolution to emerge
(20). With lab-based studies researchers can manipulate communicative and cognitive pressures
in ways that cannot be done in the real-world, to assess effects on emerging systems. Moreover,
computational simulations, not yet discussed (but see Fig. 1, and (/45, 146)) allow investigation
of learning biases that may differ from those of modern humans. Importantly, it is still an open
question which, if any, capabilities underlying language structure are uniquely enhanced in
humans. One component hypothesised as highly developed in humans and weak or absent in other
species is “dendrophilia”, a domain-general proclivity to infer tree structures from data whenever
possible (/47) (Fig. 4).
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Figure 4. The origins of hierarchical structure - Dendrophilia or semantics? An open question for the field
concerns which, if any, capabilities underlying language are uniquely enhanced in humans. One component
hypothesised as highly developed in humans and weak or absent in other species is “dendrophilia”, a domain-general
proclivity to infer tree structures from data whenever possible (/47). Dendrophilia combines a domain-general
capacity to perceive hierarchical structures in stimuli with a strong preference to encode data into hierarchical
structures. (A) This preference is often studied using Artificial Grammar Learning (AGL) experiments where learners
are exposed to sequences of stimuli whose appearance is governed by an underlying hierarchical grammar. If learners
deduced the grammar, they should be able to complete sequences in a way that conforms to it. Considerable
experimental evidence from cross-species AGL research supports dendrophilia as being both highly developed and
biologically canalised in humans, and reduced or absent in other species studied to date (6, 148, 149). For example, a
recent study found that, with adequate time and a consistent exogenous reward structure, macaque monkeys can learn
hierarchical structures based on meaningless spatial/motor sequences, but learning requiring many months and tens
of thousands of rewarded trials. In contrast, pre-school children learn these same systems rapidly, in as few as six
trials, with few/no errors (/49). The presence of some hierarchical structure in homesign (case study 2) offers further
evidence of biological preparedness for dendrophilia in our species (/15). However, the finding that linguistic structure
emerges gradually over generations indicates that cultural transmission is important for explaining hierarchical
structure in fully developed languages (as for birdsong). Some precursor(s) of dendrophilia may be present in the
motor and/or social domain in other primates, such as the perception and processing of complex dominance
hierarchies, as shown in baboons and other socially complex species (/50—152). (B) The problem of acquiring and
using tree-like structures may be greatly reduced in contexts involving signal/meaning pairs (as in human language).
If semantics already possess hierarchical structure, and signals are mapped onto this hierarchical meaning space, it
may strongly bias the learner to impose or perceive tree structure in the signals themselves. Importantly, the existence
of hierarchical structure in human music (e.g. (/53)), or similar systems like bird or whale song (e.g. (/54)), where
signals do not map onto highly structured meanings, suggests that compositional semantic mappings are not necessary
(or solely responsible) for hierarchical structure to emerge. Similarly, in AGL experiments, humans readily perceive
hierarchical structure in meaningless visual strings (/55, /56). Better understanding of the neural mechanisms
involved in structural learning, and innovative new methods to “tweak” reward structures in animals, can shed light
on origins of hierarchical structure not just in language but also other domains such as music and art.

So far, we illustrated impacts of learning, communication, and cultural transmission in creating
combinatorial structure in humans who are already biologically prepared for language. Roles of
biological evolution can be investigated using animal models. Here, researchers control
preparedness via the choice of species, while experimentally manipulating social pressures and
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rewards. Two relevant models are songbirds and baboons, who differ from humans, and from each
other, in important ways. As introduced in case study 1, songbirds are vocal production learners,
with culturally transmitted song (157, 158). Songbirds are also among the few non-human animals
whose signalling exhibits combinatorial structure. Songs are constructed from individual elements
that are repeated and recombined (/59). Despite their “instinct to learn” a species-typical song
(160), isolated songbirds deprived of appropriate input sing only a harsh, atonal “isolate song”
(159). When isolate songs are transmitted to successive generations of learners via iterated
learning, zebra finches converge within a few generations on a novel (albeit well-formed and
species-typical) song exhibiting combinatorial structure (/617). Even if this developmental process
is limited to one bird hearing its own songs played back after a delay, a more species-typical song
results (/62). Transmission over generations/iterations seems crucial for emergence of elaborated
species-typical structure, whether the starting point is isolate song in vocal-learning birds, or
homesign in humans.

Songbirds are biologically prepared to learn and transmit songs. In contrast, despite powerful
learning abilities (/63—165), non-human primates lack culturally transmitted communication
systems, and the combinatoriality of their gestural signalling is not as productive or widespread as
in humans or songbirds (/66). Recent evidence indicates a degree of combinatoriality in
vocalizations of some ape/primate species (167, 167, 168), though it is unclear whether they are
used communicatively. Experiments with captive baboons suggest that systematically structured
behaviour can emerge in animals lacking it, if cultural transmission is supported externally (/69).
In these studies, baboons are given exogenous rewards for reproducing randomly generated visual
patterns. Cultural transmission is experimentally simulated by providing patterns from one baboon
as input to another, creating an iterated learning design. Remarkably, systematically structured
patterns emerge over iterations: although baboons lack biological preparedness for cultural
transmission, when transmission is supported externally, structured patterns emerge. These
experiments demonstrate that adding exogenous rewards for copying behaviour (present
endogenously in humans and songbirds) facilitates the emergence of systematicity.

Case study 3: Social underpinnings of language

Social interactions are key for first language acquisition, with individual learning typically
occurring within interactive contexts (/70, 171). These interactions provide children with valuable
linguistic input, facilitating learning in various ways (/72). Although infants can learn in non-
communicative settings, and do so in experimental contexts (/40, 173, 174), many aspects of
language learning are facilitated by social interaction (/72). For instance, contingent maternal
responses yield more mature vocalisations in human infants (/75). Similarly, learning of non-
native phonetic sounds in infancy is enhanced by social interaction (/76). Both homesign and
emerging sign languages (case study 2) are motivated by the need and desire for social
communication (although in homesign, the communications systems themselves are not shared
with others (/77)). Later in development, there is evidence of bi-directional links between
language abilities and aspects of social cognition/interaction (/78—180). Gains in prosocial
behaviours in early childhood (age 3-to-5 years) are significantly associated with later gains in
verbal ability (age 5-to-11 years), and vice versa (/87). Better language skills facilitate children’s
social-emotional competence, allowing formation of more prosocial, cooperative relationships
(181-185). Conversely, language difficulties often associate with increased difficulty with social
interactions (/86—188).
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Social interaction contributes to individual learning in other species with culturally transmitted
communication systems. Although we stress the importance of endogenous reward during early
birdsong acquisition, exogenous reinforcement from social partners is crucial in later learning,
maintenance, and modification of song (/89, 7190). Female cowbirds provide behavioural feedback
(wing-flaps) to courting males, influencing later use of particular syllables or syllable sequences
(1/89). When parent zebra finches give behavioural feedback, juveniles develop more accurate
copies of tutor song (/90). Exogenous reward of vocal learning involves dopaminergic systems
(191, 192). Socially-tutored zebra finches show higher activity of dopaminergic neurons in the
ventral tegmental area, compared to birds who passively heard songs or untutored controls (/97),
and optogenetically blocking dopaminergic input to song circuits during social tutoring impairs
song learning (96).

Beyond social underpinnings which enable cultural transmission of language, humans have a
strong, unparalleled internal drive to socially share information, including about inner states,
emotions and ideas, using language (“Mitteilungsbediirfnis”, (2)). Sharing for sharing’s sake is
prevalent in humans, but rare in non-human primates. Even language-trained apes, who master
aspects of human sign language, show limited interest in using this to express things other than
direct requests (793, 194). In contrast, our drive to share thoughts and feelings with others is so
strong that humans create a communication system de novo even if one is not available (case study
2).

The social context, together with our “mitteilungsbediirfnis”, make language learning and use
rewarding for humans. How might the evolution of reward mechanisms relate to emergence of
communication systems? One evolutionary pathway of potential relevance is the process of
domestication. The Bengalese finch, a domesticated variant of a wild songbird, the white-rumped
munia (/95-199), offers an example of relationships between changes in reward and
communication systems. As in many domesticates, stress hormone levels are significantly lower
in Bengalese finches compared to munias (/97), and the former display less aggression (/98) and
explore new environments faster than their wild counterparts (/99). Intriguingly, Bengalese
finches produce songs with greater phonological and syntactic complexity than those of munias
(200). They are capable of learning munia songs, whereas munias struggle to master Bengalese
songs (/95). Domesticated Bengalese show higher concentrations of cerebral oxytocin than their
wild ancestors (201, 202); oxytocin and dopaminergic reward systems are known to be closely
interconnected (203-205).

Did humans follow evolutionary pathways similar to those underlying animal domestication,
where less aggressive individuals that were more prone to cooperatively interact had greater
likelihood to survive and/or reproduce? According to the human self-domestication hypothesis,
such processes enhanced social learning and cultural transmission in humans (206-209). This
could generate virtuous cycles at the community-level: increased social reward for communication
favours emergence of more advanced forms of communication, enabling larger in-groups and more
interaction with non-kin, which results in even richer social interaction. Some support for links
between greater communicative complexity and greater social complexity (operationalized by
larger group sizes, more dense networks, etc.) comes from multi-species comparative research,
from bats to primates (210, 211). Human experimental data provide suggestive evidence: artificial
languages evolving in larger micro-societies of interacting participants show more systematic
compositional structures, emerging faster and more consistently than in smaller groups (25).
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Discussion

Our case studies include diverse data sources (behavioural, neural, genetic, developmental), and
adopt broad comparative perspectives, with particular focus on humans, primates and songbirds.
They demonstrate how facets involved in language emergence can be insightfully studied in non-
humans. No single method, tool or model holds all the answers, and investigations of different
facets may require different approaches. A common thread is that exaptation and recombination
of abilities present in non-humans, combined with intra- and inter-generational cultural
transmission, can yield linguistic capacities in our own species. VPL, crucial for acquiring spoken
language in humans, is a capacity that humans share with other species, appearing in diverse
branches of the vertebrate evolutionary tree. Social underpinnings needed for human language
transmission are documented in other species with culturally transmitted systems, but humans also
demonstrate communicative tendencies rarely observed in non-human animals (e.g., our
“mitteilungsbediirfnis”). Emergence of linguistic structure, a defining property of human
language, involves a combination of biological, cognitive, and cultural conditions: While some (or
all) conditions are shared with various non-human species, the combination may be unique to
humans.

The case studies illustrate the value of explicit bio-cultural framing, showing how language
emerges dynamically at three distinct but interacting levels: the individual (language acquisition
and use), the community (cultural evolution and historical language change), and the species
(biological evolution). The human ability to acquire and use language, and languages themselves,
result from multiple interactions, over time, among these levels, making all three important for
understanding language emergence. Biological evolution generates the biological preparedness to
acquire language shared by all human infants. Via individual learning in a social setting, the child
acquires the language(s) of their community, which themselves develop through dynamic
processes of cultural evolution. The ways in which these distinct levels interact, constrain, and
structure one another can be non-intuitive. Understanding them requires combinations of data,
models, and experiments.

A recurring theme and promising avenue for future research, is the role of biological reward
systems in language evolution. These systems include the motivation to communicate, and both
endogenous and exogenous reward for successful imitation and communication during language
acquisition, use, and transmission. Although it is currently impossible to “insert” endogenous
rewards for babbling into species that lack them, we can experimentally block such rewards, as
shown for songbirds (case study 1 (95)). Further, we can experimentally introduce exogenous
rewards to trigger learning in species that lack endogenous reward systems for the learned
behaviour; potentially “unmasking” cognitive capabilities that were previously unexpressed in that
species, as in baboon studies (case study 2 (2/2)). These experiments can empirically circumvent
the common criticism that investigating modern humans, who are already biologically prepared to
acquire language, reveals nothing about how key facets evolved.

An open issue concerns modality. Like many researchers, we see language as inherently multi-
modal (36), and our case studies consider both spoken and signed languages. However, we have
not discussed possibilities that the use of visual and auditory modalities may emphasise different
types of structure. Because gestural capabilities of apes greatly exceed their vocal flexibility, some
researchers have suggested that human language origins may be found in gesture and/or sign
(“gestural protolanguage”), rather than speech (27/3—215), while others vehemently deny this (276,
217). The multi-faceted bio-cultural framework, combined with recent data showing that like
humans, primates are multi-modal communications (2/8-220) strongly suggest that gesture co-
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existed with vocal communication, and eventually language, all along. Furthermore, vocal-
learning abilities might have already been enhanced in archaic hominins like Neanderthals (case
study 1), although they likely lacked fully modern language. Thus, “which came first, sign or
speech?” is the wrong question. Productive future debate should centre on how gesture and speech
support one another, and why language (unlike, say, birdsong) is flexible enough to be conveyed
by radically different sensory systems.
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