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Networks are well-established representations of social systems, and tem-
poral networks are widely used to study their dynamics. However, going
from temporal network data (i.e. a stream of interactions between individ-
uals) to a representation of the social group’s evolution remains a
challenge. Indeed, the temporal network at any specific time contains only
the interactions taking place at that time and aggregating on successive
time-windows also has important limitations. Here, we present a new frame-
work to study the dynamic evolution of social networks based on the idea
that social relationships are interdependent: as the time we can invest in
social relationships is limited, reinforcing a relationship with someone is
done at the expense of our relationships with others. We implement this
interdependence in a parsimonious two-parameter model and apply it to
several human and non-human primates’ datasets to demonstrate that this
model detects even small and short perturbations of the networks that
cannot be detected using the standard technique of successive aggregated
networks. Our model solves a long-standing problem by providing a
simple and natural way to describe the dynamic evolution of social
networks, with far-reaching consequences for the study of social networks
and social evolution.
1. Introduction
Social relationships are created and maintained through interactions between
individuals, which can last and be repeated over a variety of time scales.
Social networks provide convenient representations for the resulting human
and non-human animal social structures, where individuals are the nodes of
the networks and links (ties) are summaries of their social interactions [1–4].
Recently, the availability of temporally resolved data on interactions between
individuals, from various types of communication [5–9] to face-to-face inter-
actions [10–13] has fuelled the development of the field of temporal networks
[14,15], which replaces static ties by information on the actual series of inter-
actions on each tie, allowing researchers to further the study of social
networks. For instance, aggregating temporal information over successive
time windows has made it possible to follow the evolution of ties over larger
time scales [16–19]. Taking into account the temporal features of each tie
during a certain time window can also shed light on their strength and persist-
ence [20,21]. Finally, researchers have identified temporal structures with no
static equivalent [22–24] that reveal interesting patterns of relevance to the
analysis of social phenomena or dynamic processes in a social group [25,26].

Despite this progress, moving from a stream of interactions within a group
of individuals, represented by a temporal network, to a meaningful quantifi-
cation of the strength and evolution of their social relationships, remains a
challenge. Indeed, the temporal network seen at any specific time t contains
by definition only the interactions taking place at t, while the state of a relation-
ship between two individuals at t depends potentially on the whole history of
their previous interactions, both mutual and with others. Temporal aggregation
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over successive time windows is a commonly used approach
to address this issue, but a number of properties of the
networks obtained by temporal aggregation on successive
windows depend on the window length and placement
[27–30]. Aggregating over increasingly long time windows
also averages out relevant temporal information by treating
in the same way old and recent interactions, and by not
taking into account possible temporal correlations between
successive interactions, nor the impact of a single interaction
on multiple ties. Moreover, no single natural time scale for
aggregation can be defined, as relevant dynamics occur on
multiple time scales [31–34].

Here, we put forward a new systematic way to transform
the stream of interactions between individuals into a continu-
ously evolving representation of the social structure (i.e. a
network with time-varying weights), taking into account
the temporal ordering of interactions in a non-trivial way.
The evolving weight wij(t) of the tie between nodes i and j
represents a quantification of the strength of their relationship
at t. Moreover, our framework goes beyond the few such
dynamic network models proposed to date [35–38], that are
based on the idea that the weight of a tie between two indi-
viduals strengthens when they interact, and that in the
absence of interaction, the tie’s weight decays exponentially
with time (the time scale of the decay is the model’s par-
ameter): these rules of evolution assume that the links
between distinct pairs of individuals are independent, while
the interdependence of social relationships is instead often
well justified. For instance, in the complex social groups
formed by humans and other primates [39–41], investing in
a social relationship is a costly strategic decision that requires
specific cognitive skills [42] and the quality of an individual’s
social relationships depends on the time invested in them
[43–45]. Thus, the occurrence of a social interaction between
two individuals not only reinforces their mutual relationship,
but it also weakens the relationships they have with others:
the time and energy spent to maintain the tie with an individ-
ual is taken from a finite interaction capacity and thus is time
that is not spent with others. The framework that we put for-
ward here takes into account this interdependence of social
relationships to transform a stream of interactions into an
evolving weighted network: with each interaction between
two individuals, the weight of their tie increases, while the
weights of the ties they have with other individuals decrease.
In contrast to other recent temporal network representations
[35,36], time itself is not explicit, and the weight of a tie
remains unchanged if the corresponding individuals do not
interact with anyone. Our framework is therefore linked to
the Elo rating method [46] used to rank chess players and
analyse animal hierarchies: the dynamics of the system are
determined by the pace of interactions between individuals,
not by the absolute time between events.

In the following, we define a parsimonious model for the
evolution of social ties based on these concepts, with two par-
ameters quantifying, respectively, the increase in the weight
of a tie i− j when an interaction occurs between i and j,
and its decrease when another interaction involving either i
or j (but not both) takes place. We then show the relevance
of the model by applying it to several datasets describing
interactions in groups of human and non-human primates
and by using it to automatically detect naturally occurring
changes in the groups’ dynamics and artificially generated
perturbations in the data.
2. Results
(a) Framework
The concepts highlighted above can be translated in various
ways to transform a stream of interactions into evolving tie
weights of an evolving directed network G(t). The nodes of
the network represent the individuals and the weight wij(t)
represents the strength of the social relationship from i to j
at time t. Here, we consider a model depending on two
parameters, α and β, with the following rules:

— We start from an empty network with uniform weights
initialized to zero, i.e. wijð0Þ ¼ 0 8i, j.

— At each time t, we denote by E(t) the set of interacting ties
at t. Then, for each tie (i, j )∈ E(t), the weights of the ties in
which i and j are involved are updated according to

wijðtþÞ ¼ wijðt�Þ þ aðwmax � wijðt�ÞÞ
wjiðtþÞ ¼ wjiðt�Þ þ aðwmax � wjiðt�ÞÞ

ð2:1Þ

and

wikðtþÞ ¼ ð1� bÞwikðt�Þ 8k = j, ði, kÞ � EðtÞ
wjkðtþÞ ¼ ð1� bÞwjkðt�Þ 8k = i, ðj, kÞ � EðtÞ: ð2:2Þ

The weights of all ties interacting at t thus increase
according to (2.1), while the weights of the neighbouring
ties that do not interact at t decrease according to (2.2).
These rules of evolution can be applied to temporal network
data expressed either in continuous time (i.e. an interaction
between two individuals can occur at any time) or in discrete
time (when the data itself has a finite temporal resolution): in
the former case, t− and t+ stand respectively for the times
immediately before and after the interaction; in the latter
case, t− is simply replaced by t and t+ by t + 1 in equations
(2.1)–(2.2). The parameter 0 < α < 1 quantifies how much a
tie strength is reinforced by each interaction, while 0 < β < 1
accounts for the weakening of the strength of the ties with
other individuals. wmax > 0 represents the maximum possible
value of the weights, which we set to wmax = 1 without loss of
generality. These rules ensure that the weights remain
bounded between 0 and wmax and, if a tie’s weight is zero,
it remains so unless there is an interaction involving that
tie. Moreover, the weights of the ties between individuals
who interact often increase towards wmax. The weights thus
represent a quantification of the strength of the social ties at
each time, taking into account the history of interactions as
well as the impact of each interaction of an individual on
all its ties, strengthening some and weakening others. Inter-
estingly, in a simple case of random and uncorrelated
interactions, the long-time limit of the weight between two
individuals can be shown to correspond to their probability
of interaction (see electronic supplementary material).

It is important to stress that, while instantaneous inter-
actions may be undirected (no source nor target individuals
such as in face-to-face interaction data), the evolution rules
(2.1)–(2.2) result in a directed network. Upon an interaction
between i and j, wij and wji evolve in the same way; however,
when i interacts with other individuals than j, wij decreases
while wji is not affected. For instance, if j interacts only with
i but i interacts with many other individuals, wji can only
increase (upon each interaction with i), while wij will increase
at each interaction of i and j and decrease at each interaction
of i with k≠ j: wji thus becomes larger than wij, reflecting the
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Figure 1. Similarity matrices and school schedules for a day in a French elementary school (a) and in a US middle school (b). Here we use α = β = 0.1, and the
evolving networks are observed every Δ = 20 min for the French school and every Δ = 5 min for the US school. The horizontal bars give information about the
schedule of a school day. The different colours correspond to the class times (indicated by the letter C in (a) and with different numbers in (b)) and lunchtimes
(indicated by the letter L). In (b), there are two bars because the students were split into two groups. (Online version in colour.)
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fact that i is more important to j than j to i. Naturally, the
evolution rules could easily be modified in the case of
directed interactions, such as in an exchange of text messages
or on online social media: for instance, if i sends a message to
j, the weights wij and wik could be affected more strongly than
the weights wji and wjk. However, this would require the
introduction of additional parameters.
(b) Application to empirical data
Let us first consider empirical data describing face-to-face
proximity interactions collected by wearable devices in two
schools, namely a French elementary school [47] and a US
middle school in Utah [13,48], with a temporal resolution of
approximately 20 s in both cases (the devices collected data
on the relative proximity of individuals, and not on their
location; see Material and methods for more details).
Although both cases involve school contexts, the classes
were organized very differently, as described in [47,48]: the
elementary school students remained in the same classroom
for their different classes, while the middle school students
changed classrooms between classes.

In each case, we transformed the temporal network data
into a network G(t), with the weights evolving according
to the rules (2.1)–(2.2). For simplicity, we used α = β and con-
sidered various values of α. We then stored the network G(t)
and the tie weights every Δ time steps (i.e. we store G(nΔ)
for n = 0, 1, 2,…) and computed the similarity between
each pair of the stored networks G(nΔ) and G(n0Δ) (see
Material and methods). We thus obtained a matrix of simi-
larity values [18,34] for each value of α, shown in figure 1
for α = 0.1.

For instance, in the case of the US school, the large values
of similarity found in the diagonal blocks (in yellow) indicate
periods in which the network G(t) remains stable, and lower
values (off-diagonal) indicate that these periods of stability
are different from each other; as seen from the comparison
with the school schedule, each diagonal block (period of stab-
ility of the network) corresponds to a specific class period.
In the French school, the organization in blocks correspond
to the class and lunch periods. These matrices thus clearly
highlight that the two contexts correspond to different
schedules and organizations of interactions and reflect the
temporal organization and the periods of importance in
the school schedules. We show in figure S1 in the electronic
supplementary material that, at small α, the weights evolve
too slowly and the distinction between the various periods
is blurred: the distinction between the various periods
becomes clearer as α increases.
(c) Detection of a perturbation
To go beyond a mere visual inspection of the similarity
matrices, we considered a more systematic analysis of the
capacity of a temporal network representation, obtained
either by temporal aggregation or through our framework,
to detect perturbations in a social group’s interaction
patterns. To this aim, we first introduced a synthetic pertur-
bation of controlled intensity and duration in the temporal
network data, for instance by switching the identity of
some nodes for a certain duration. We then followed the
steps outlined in figure 2. First, we used our framework to
transform the perturbed temporal network into an evolving
weighted graph according to the evolution rules (2.1)–(2.2).
This weighted graph was observed every p time steps
(if the real time duration of one time step is δ, this means
that we observed the graph every Δ = pδ). As a baseline, we
also aggregated the temporal network data on successive
time windows of duration Δ (figure 2a), i.e. we considered
at time t = (m + 1)p (m being an integer) the aggregation of
the p snapshots tmpþ1, tmpþ2, . . ., tmpþp, using as weights of
the aggregated links the number of interactions in that time
range. We then followed Masuda et al.’s procedure for detect-
ing states in a temporal network [34]. Namely, we computed
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sequence of networks, either by temporal aggregation over successive time windows of p time steps: namely aggregating the p snapshots from tmp+1 to tmp+p
(m being an integer), and using as weight wa

ij of a link ij in the aggregated network the number of interactions between i and j in this time range, or by
transforming the data into an evolving network observed every p time steps. (b) Computation of the similarity between all pairs of networks using the
global cosine similarity (see Material and methods). (c) Classification of the networks into discrete states using a hierarchical clustering algorithm on the distance
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Figure 3. Detection of a simulated perturbation in a temporal network dataset. Here, we consider one day of proximity data collected from a group of 13 baboons
(see Material and methods). The data, with a temporal resolution of 20 s, are artificially perturbed by exchanging the identity of two nodes for 2 h. The resulting
temporal network is transformed into a weighted evolving network as described in the text, and this network is observed every 30 min. Panels (a–c) represent the
resulting cosine similarity matrices for values of α = β = 0.001, 0.1, 0.5, respectively. The black and red lines correspond to the (known) start and end times of
the perturbation. Panel (d ) shows the performance detection of network states (figure 2), computed from the hierarchical clustering analysis applied to the distance
matrices, with the number of clusters fixed to C = 3. The blue line represents the relative delay in the detection of the perturbation, i.e. the difference between the
known beginning of the perturbation (black line) and the detection of a new network state, divided by the total length of the perturbation. The orange line
indicates the Jaccard index between the known perturbation and the perturbation detected by the clustering algorithm. The detection performance relative to
the aggregated network is not presented because no cluster detected by the algorithm corresponded to the simulated perturbation. The similarity matrices for
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the cosine similarity matrix between graphs observed at
different times (figure 2b), transformed it into a distance
matrix, and applied a hierarchical clustering algorithm (see
Material andmethods) to detect discrete states of the network.
As the ground truth perturbation is known, we added a vali-
dation step to compare the states obtained by the clustering
algorithm to the known perturbation. In this step, we quanti-
fied the detection performance through two indicators (figure
2d ), namely the Jaccard index between the sets of timestamps
of the actual perturbation and the timestamps of the perturbed
state detected, and the delay between the start time of the
actual perturbation and the corresponding value obtained
through the clustering algorithm (see Material and methods).

To illustrate the procedure, we considered proximity data
from a group of baboons (see Material and methods). We
introduced a small perturbation in the data, namely the
exchange of two individual’s identities in the data during a
certain period. In figure 3, we use a perturbation duration
of 2 h and show the resulting similarity matrices between
the weighted evolving networks obtained for three values
of α = β and observed every 30min. We also measure and
show the detection performance as a function of α. Strikingly,
even such a small and short perturbation is well detected
over a wide range of α values, excepting the smallest and
largest. Notably, the perturbation is instead not detected
when using temporal aggregation over successive windows
of 30 min. The perturbation is not detected for small α
values, as the resulting network dynamics is too slow:
figure 3a shows that the network remains very similar to
itself during the whole explored time range. However, we
observe a sharp increase in detection performance as soon
as the resulting dynamics are fast enough. At very large α
values, the detection becomes impossible again because
each single interaction induces large changes in the weights,
leading to rapidly changing dynamics.

In the electronic supplementary material, we also con-
sidered daily and weekly time scales of observation with
perturbations lasting days or weeks (figures S5 and S6) At
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such time scales, our framework resulted in a perfect or
almost perfect detection of the perturbation for a wide
range of values of the parameter α (values of the Jaccard
index close or equal to 1), while the perturbation was rarely
detected when using daily aggregated networks. Note that,
at this stage, no single optimal value of the parameter
emerges: rather, the existence of the perturbation can be
assessed with some degree of confidence by the fact that
the procedure detects the same perturbed state over a range
of parameter values.

We further investigated whether using different values
for the parameters α and β could lead to an improvement
in the detection performance. We show the results in
figure 4 for the same data and perturbation as for figure 3
(see also electronic supplementary material, figure S7). We
found that the detection performance worsened for β < α,
while it increased for β > α. This can be understood as
follows: at small values of α = β, the weights’ increase and
decrease are too slow upon a brutal change in the inter-
actions, and the perturbation is not well detected; this
can be compensated by a larger β that induces a fast decrease
of the weights of non-interacting ties. For instance, if a node i
was repeatedly interacting with a node j before the
perturbation, but interacts more with another one k during
the perturbation, wij decreases quickly as soon as the
perturbation starts, and this can be easily detected even if
the small value of α makes wik increase only slowly.
3. Discussion
How can we represent the evolution of social relationships?
Temporal aggregation procedures have provided in-depth
knowledge on the dynamics of social networks at various
time scales [16,17,19] and are also used for data-driven
numerical simulations of dynamic processes of networks
[49], possibly with aggregation schemes adapted to the
specific process under study [31]. They however lose infor-
mation on the temporal ordering of interactions and do not
take into account the impact of interactions on neighbouring
ties.

Here, we have presented a new framework to go from a
stream of interactions to a quantification of the strength
of ties in a social network and to study their dynamic
evolution, based on the idea that social relationships are
interdependent: since time resources to invest in social
relationships are limited [45], reinforcing a relationship with
someone is necessarily done at the expense of the relationships
with others. While this idea can be translated in various ways
into specific rules of evolution, here we have focused on a
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parsimonious two-parameter model rather than onmore com-
plex alternatives. We have applied this model to several
datasets of interest, showing its ability to highlight changes
in the dynamics of the networks and differences between
data representing interactions in different contexts. Moreover,
we have systematically tested its ability to detect a pertur-
bation in the network at different time scales. Notably, our
results show that this simple model yields a high detection
performance even for small and short perturbations that
cannot be detected by the dynamics of successive aggregated
networks. Overall, our framework is able to detect pertur-
bations in a broad range of conditions spanning different
datasets and various time scales and perturbations. This
point is particularly important as real-world variations in
social relationships can occur on a broad range of time
scales, from hours to days tomonths. For instance, despite dec-
ades of research, the time scale of the exchange of favours in
primates (e.g. grooming in exchange for other commodities)
is still very uncertain [50]. Our framework does not require a
specification of the time scale of changes to be detected a
priori and in our current study, the temporal organization rel-
evant in the school datasets and the artificial perturbations
introduced were detected in a broad range of parameter
values. However, whether the same range of parameter
values could be used to detect any kind of temporal patterns
in an unknown dataset remains an open question. To explore
a new dataset, a sensible path would be either to consider
known changes in the network (if such information is avail-
able) or to simulate a plausible perturbation of the data,
and scan parameter values to checkwhen such changes or per-
turbations are detected. A natural hypothesis would then be
that the temporal patterns present in the data should be
detected using the same range of parameter values. Finding
the same temporal patterns on a range of parameter values
would also give confidence on the significance of these pat-
terns. To investigate this point in more detail, further
research will use a collection of temporal network models
with tunable parameters and different levels of complexity
and realism [51,52]. Introducing perturbations of various
types (e.g. changes in the community structure over time,
changes in activity, etc), and of tunable intensity and duration,
will allow us to systematically explore the detection capacities
and limitations of the evolving weighted graph framework
introduced here.

Our focus here has been on the issue of detecting when a
perturbation occur in a social network, as it is a known challen-
ging task. Once the existence of a perturbation is established,
investigatingmore detailed quantities such as the distributions
of local similarities between the neighbourhoods of individ-
uals, or individual trajectories of the similarity of each local
neighbourhood between successive times (see [18]) could
also make possible to detect which nodes or links are involved
in the perturbation. Alternatively, this might also be achieved
by considering individual matrices of similarities between
neighbourhoods of individuals at different times, and
applying clustering algorithms to each such matrix.

An interesting property of our framework is that, starting
from a stream of undirected interactions, it yields directed
ties, because individuals do not invest in their mutual
relationship in the same way; for instance, one individual
may spend 80% of her time with another, while the other
spends only 50% of her time with the first. The weights on
each tie can therefore be more or less symmetric, and it
would be interesting to investigate this point with respect
to the social relationships under study. To this aim, one
would need to compare the directed network obtained
from our framework to other independent measures, such
as friendship surveys in a human group or grooming
behaviour in non-human primates.

While we have limited our current study to a simple
version of the model, several extensions could be of interest.
In particular, directed interactions between individuals (such
as phone or online messages) could be taken into account,
with different impacts on the ties originating from the
source of the interaction and on the ties originating from
the interaction target. Moreover, one could take into account
individual characteristics that are often important in relation-
ships by introducing α and β coefficients that depend on
individual characteristics such as age, sex, kinship or rank.
This would be appropriate for instance when the costs and
benefits of interactions differ between low ranking and high
ranking individuals [53]. Our framework could also provide
an extension of models of social contagion or consensus for-
mation [54,55]: in the spirit of [31], it could help take into
account that interactions with different individuals and at
different times are not equivalent, by providing a way to
dynamically weigh these interactions (an interaction along a
currently strong tie would weigh more than along a weak tie).

Finally, our focus here has been on social relationships of
primates in particular, but our conceptual contribution lies in
taking into account the interdependence of ties in evolving net-
works. Thus, our framework may well apply to other systems
where such interdependence is relevant, possibly with changes
in the rules of evolution. In particular, we have considered that
an interaction between two nodes reinforces the tie between
them at the expense of ties with other nodes, but in other con-
texts, the increase of a tie’s weight may in fact increase the
importance of related ties. For instance, if a new flight route is
created between two airports, passengersmay take other flights
to connect to other destinations, increasing the traffic on the cor-
responding routes [56]. Taking these interactions into account
might open up new perspectives to study the evolution of
these types of infrastructure networks [57].
4. Material and methods
(a) Data description and aggregation
We used three datasets of time-stamped dyadic interactions
between individuals corresponding to physical proximity events:

— A dataset of contacts between students in an urban public
middle school in Utah (USA) measured by an infrastructure
based on wireless ranging enabled nodes (WRENs) [13,48].
The data, available in reference [48], involve 679 students
in grades 7 and 8 (typical age range from 12 to 14 years
old). Participants were recorded over 2 consecutive days.

— A dataset gathered by the SocioPatterns collaboration (http://
www.sociopatterns.org/) using radio-frequency identification
devices in an elementary school in France. These sensors
record face-to-face contacts within a distance of about 1.5m.
The data were aggregated with a temporal resolution of 20 s
(for more details see [10]). Contacts between 242 participants
(232 elementary school children and 10 teachers)were recorded
over 2 consecutive days [47]. The data are publicly available at
http://www.sociopatterns.org/datasets.

http://www.sociopatterns.org/
http://www.sociopatterns.org/
http://www.sociopatterns.org/
http://www.sociopatterns.org/datasets
http://www.sociopatterns.org/datasets
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— Data of proximity contacts within a group of Guinea baboons
(Papio papio), collected from June toNovember 2019.A subgroup
of 13 baboons consisting only of juveniles and adults were
equippedwith leather collars fittedwith thewearable proximity
sensors developed by the SocioPatterns collaboration (see [58]).

(b) Similarity between networks
To compare the weighted evolving networks (or aggregated net-
works) observed at different times, we chose the global cosine
similarity between the two vectors formed by the list of all the
weights in each network (using aweight 0 if a linkwas not present).

A cosine similarity measure is generally defined between two
vectors and is bounded between −1 and +1. It takes the value +1
if the vectors are proportional with a positive proportionality
constant, a value of −1 if the proportionality constant is negative,
and 0 if they are perpendicular. For positive weights, as in our
case, it is bounded between 0 and 1.

In the case of two networks, G1 and G2, the global cosine
similarity is defined as

GCSG1,G2 ¼
P

i.j w
ð1Þ
ij wð2Þ

ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i.j (w

ð1Þ
ij )2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i.j (w

ð2Þ
ij )2

q , ð4:1Þ

where the superscripts (1) and (2) denote the weights of the links
in the networks G1 and G2, respectively.

(c) Clustering method
To obtain discrete system states by hierarchical clustering, we used
the ‘fcluster’ function of the scipy.hierarchy library from
the SciPy module in Python. The function is applied directly on
the tmax × tmax distance matrix d, obtained by transforming the
cosine similarity matrix elements for each pair of timestamps
(t, t0): d(t, t0) = 1−CS(t, t0). To define the distance between clusters,
weused the ‘average’method in the ‘linkage’ functionof the library.
We set the number of clusters toC = 3, corresponding to the periods
before, during and after the perturbation.

(d) Detection performance
To assess the performance of our model, our rationale was that
the temporal network representation should allow us to detect
changes in the social structure, and the quality of the detection
entails two aspects: it has to be detected (i) without delays and
(ii) clearly (i.e. social changes have to be distinguished from
the noise represented by ‘ordinary’ variations in social activity).
In particular, a perturbation is said to be well detected if one
of the states found by the clustering algorithm includes all the
timestamps of the perturbation and only those.

We first verified that one of the detected clusters could be
associatedwith the perturbation in the data. To this end, we deter-
mined that each cluster would correspond to a set of contiguous
timestamps (thus forming an interval), with the smallest time
equal to or larger than the initial timestamp of the perturbation,
and largest time equal to or larger than the final timestamp of
the perturbation. A first measure to evaluate the quality of the
detection was then given by the ‘delay’ between the actual and
the detected perturbation (the number of timestamps between
the actual starting time of the perturbation and the smallest time-
stamp of the second cluster detected; see figure 2d ). The second
measure was given by the Jaccard index J between the set of
time steps during which the actual perturbation takes place,
T ground truth, and the set of time steps of the state detected as a
perturbation by the clustering procedure, T detected:

J ¼ jT ground truth > T detectedj
jT ground truth < T detectedj : ð4:2Þ
Data accessibility. All the data used in the analyses have been published
and are freely accessible. All numerical simulations and analysis were
carried out in python. An implementation example is available at
https://github.com/barrat/Evolution_weights_model.
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