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ORIGINS OF LANGUAGE

What enables human language? A biocultural framework
Inbal Arnon*, Liran Carmel, Nicolas Claidière, W. Tecumseh Fitch, Susan Goldin-Meadow, Simon Kirby, Kazuo Okanoya, 
Limor Raviv, Lucie Wolters, Simon E. Fisher* 

BACKGROUND: Explaining the origins of language is a key challenge  
in understanding ourselves as a species. We present an empirical 
framework that draws on synergies across scientific disciplines to 
facilitate robust studies of language evolution. The approach is 
multifaceted, seeing language emergence as dependent on convergence 
of multiple capacities, each with their own evolutionary trajectories. It 
is explicitly biocultural, recognizing and incorporating the importance 
of both biological preparedness and cultural transmission as well as 
interactions between them. Biocultural and multifaceted perspectives 
are increasingly appreciated, but there remains a need to integrate 
them within a unified framework and demonstrate how this advances 
understanding. We do so in this paper through three case studies 
examining the evolution of different facets of human language (vocal 
production learning, linguistic structure, and social underpinnings), 
each synthesizing the latest findings from multiple fields to generate 
valuable insights and setting a new agenda for future research.

ADVANCES: Case study 1 considers vocal production learning, an 
organism’s capacity to enlarge and modify its repertoire of vocalizations 
based on auditory experience. This ability is crucial for learning spoken 
language and limited in nonhuman primates but has emerged in  
other branches of the evolutionary tree, including subsets of birds, bats, 
elephants, cetaceans, and pinnipeds. Bringing together data from 
molecular investigations of speech and language disorders, genetic 
manipulations in animal models, and studies of ancient DNA, this case 
study demonstrates how ancient genetic and neural infrastructures  
may have been modified and recombined to enable distinctive human 
capacities. Case study 2 examines the emergence of linguistic structure, a 
defining property of human language, using data from real-world cases 
of emergence (e.g., homesign and emerging sign languages); experiments 
recreating cultural evolution in the lab; and comparative studies of 
nonhuman animals, including songbirds and primates. This case study 
highlights the importance of transmission and interaction, suggesting 
that emergence of structure involves a combination of biological, 
cognitive, and cultural conditions: Although some (or all) traits are 
shared with other species, their combination may be specific to humans. 
Case study 3 focuses on the social underpinnings of communication 
across species. Social interaction contributes to language learning in 
humans and learned behaviors in other species with culturally transmitted 
communication systems, such as songbirds. But humans also demon-
strate a strong internal drive to socially share information, which is rarely 
observed in nonhuman animals. 

OUTLOOK: Drawing on diverse data, the case studies show how 
modification and recombination of abilities present in nonhumans, 
combined with intra- and intergenerational cultural transmission, may 
yield linguistic capacities in our own species. This perspective increases 
the range of species relevant for understanding language origins, as 
different abilities may be present across different branches of the 
evolutionary tree. The case studies also demonstrate the value of 
explicit biocultural framing, where both biological preparedness and 

cultural evolution shape language emergence. Language evolution is 
impacted by three distinct but interacting timescales: the individual 
(language learning), the community (cultural evolution), and the 
species (biological evolution). Understanding how the timescales 
interact and constrain one another requires synergies of data, methods, 
and fields. A recurring theme and avenue for future research is the role 
of biological reward systems in language evolution, including the 
motivation to communicate and endogenous and exogenous rewards 
for successful imitation and communication. Our integrative frame-
work shows how research across disciplines and methods can advance 
understanding of a fundamental question in human evolution. 
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An empirical framework 
for the study of language evolution

Our framework is both multifaceted and explicitly biocultural and is grounded in 
empirical investigations spanning a diverse array of fields and benefiting from 
major advances in methods, analyses, and theory. We demonstrate the potential of 
this integrated framework through three example case studies, each focused on a 
different facet with its own distinctive evolutionary history (other facets relevant to 
language, not discussed in the present paper, could be similarly investigated under this 
framework; these facets are represented by the empty gray boxes). Drawing on data from 
multiple disciplines and several species, including humans, primates, and songbirds,  
the case studies highlight the importance of both biological preparedness and cultural 
processes, as well as the interactions between them, in the emergence of language.
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W. Tecumseh Fitch6, Susan Goldin-Meadow7, Simon Kirby8,  
Kazuo Okanoya9, Limor Raviv10,11, Lucie Wolters12,  
Simon E. Fisher13,14* 

Explaining the origins of language is a key challenge in 
understanding ourselves as a species. We present an empirical 
framework that draws on synergies across fields to facilitate 
robust studies of language evolution. The approach is 
multifaceted, seeing language emergence as dependent on the 
convergence of multiple capacities, each with their own 
evolutionary trajectories. It is explicitly biocultural, recognizing 
and incorporating the importance of both biological 
preparedness and cultural transmission as well as interactions 
between them. We demonstrate this approach through three 
case studies that examine the evolution of different facets 
involved in human language (vocal production learning, 
linguistic structure, and social underpinnings).

Human language is a distinctive trait of our species, yet its origins are 
still not understood (1, 2). The lack of any fossil record of the first lan­
guage(s) together with many unknowns about human evolution and 
animal communication have led some to conclude that this question 
is scientifically intractable (3). We propose instead that studying lan­
guage evolution lies well within the scope of scientific enquiry when 
new sources of data and theoretical perspectives are incorporated. We 
present an empirical biocultural framework for research on language 
evolution, applying it to three case studies, each examining a different 
facet involved in human language. Our aim is neither to comprehen­
sively review the many existing theories nor to advocate for our own 
special one but to set an agenda for future interdisciplinary research, 
highlighting promising avenues.

This approach is multifaceted in seeing language emergence as de­
pendent on convergence of multiple capacities (physical, cognitive, 
social, and cultural), each with its own developmental and evolution­
ary trajectories [see (4, 5)]. Proposed facets include those related to 
production and perception of signals (e.g., vocal learning), systematic 
organization of language (e.g., linguistic structure), and communica­
tive motivations (e.g., aspects of social behavior). A facet does not have 
to be specific to humans or language to offer explanatory value: Similar 
to the evolution of other complex biological systems (e.g., the eye), the 
emergence of language can be explained by modifications and recom­
bination of ancestral infrastructures and exaptation of existing struc­
tures (6, 7). This reflects a move away from “silver bullet” views of 
language evolution [e.g., (8, 9)], where human distinctiveness is de­
fined by just one explanatory factor (e.g., a single genetic mutation). 
Although such accounts have been historically prolific, persisting in 
some academic discourse and popular science writing, they are unten­
able in light of modern biology. Considerable evidence from multiple 

sources indicates that no one thing itself was enough to “give us lan­
guage” or “make us human” (10–12). The multifaceted perspective calls 
for empirical investigations of larger historical windows. Although 
common wisdom was that language is specific to anatomically modern 
humans, appearing on the Homo sapiens lineage within the past 50 
to 150 thousand years (kyr) [e.g., (8, 9)], contemporary data suggest 
that deeper evolutionary timescales, those of hundreds of thousands 
(perhaps millions) of years, are more plausible (10, 13). Even if the 
language system as we know it in present-day humans only emerged 
recently, then different facets may have evolved over longer timescales, 
under different selective pressures.

Our approach is also biocultural, recognizing and incorporating 
biological preparedness, cultural processes, and the interactions 
between them as key factors in language emergence. Understanding 
biological preparedness, including innate learning mechanisms and 
biases, is necessary to explain the distinctiveness of human language 
and helps guide comparative research on nonhuman species. However, 
no human infant develops a fully structured language in isolation; 
such languages arise only after extended social and communicative 
interaction [e.g., (14, 15)]. Over generations, learners progressively 
systematize language through communication and cultural transmis­
sion (16–18), processes shaped by properties of the individual and the 
community (19, 20). Computational simulations, experiments, and real-
world cases of emergence identified specific cultural processes necessary 
for structured language to emerge. One reason nonhuman species lack 
human-like language may be their limited biological capacity to support 
these cultural processes. Notably, biology and culture can interact in 
complex nonintuitive ways. For example, the emergence of more complex 
communication systems can increase selective pressure on the cognitive 
mechanisms required to learn and produce complex signals. This could 
result in virtuous cycles of gene-culture coevolution (Fig. 1), making 
iterated biocultural processes central to understanding language emer­
gence. Crucially, both classes of phenomena, biological and cultural, 
along with their interactions, can be empirically investigated in hu­
mans, nonhuman animals, and simulated or artificial agents (21).

Biocultural and multifaceted perspectives are increasingly appreci­
ated in discussions of language evolution, but there is a need to inte­
grate them in a unifying framework and show concrete examples of 
how that advances understanding. We demonstrate application of an 
integrated framework through three case studies, targeting different 
facets important for language emergence: (i) Vocal production learn­
ing: the ability to modify vocalizations based on experience, critical 
for acquiring spoken language; (ii) language structure: the systematic 
ways in which linguistic elements relate to one another, underlying 
the productivity of human language; and (iii) social underpinnings: 
behaviors and processes that facilitate social interaction, enabling 
cultural transmission of language. These are not claimed as the sole 
or primary facets relevant to language evolution but are used to dem­
ostrate the value of a biocultural framework.

Case study 1: Vocal production learning
Human language is inherently multimodal, expressible through speech, 
sign, writing, or touch (22, 23). However, when available, speech is the 
primary modality across societies. Its acquisition depends on auditory-
guided vocal production learning (VPL): the ability of an organism to 
flexibly enlarge and modify its repertoire of vocalizations based on 
auditory experiences (24). VPL is critical for learning the sounds and 
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open-ended vocabulary of language. Nonhuman primates appear much 
more limited than humans in their capacity to produce new vocaliza­
tions, but these abilities have emerged in other species, including 
subsets of birds, bats, cetaceans, pinnipeds, and elephants (24). There 
is increasing evidence that the independent appearance of VPL on 
different branches of the evolutionary tree involves deep homology 
(25, 26), a phenomenon where convergently evolved traits recruit simi­
lar underlying genetic regulatory mechanisms across species (27). This 
aligns with the idea that some facets of language rely on ancient ge­
netic and neural infrastructures, modified and recombined to enable 
more complex systems or abilities. The relevance of deep homology 
for understanding VPL is exemplified by studies of the FOXP2 gene.

FOXP2 was originally discovered by using human genetics tools 
(Table 1) to investigate the biological bases of developmental speech 
and language disorders (28). Given adequate exposure to spoken lan­
guage (and in the absence of sensory disorders), most children become 
proficient language users within the first years of life. However, there 
are unusual cases where this process goes awry. Before the advent 
of molecular methods, studies comparing identical and nonidentical 
twins and documenting recurrence of cases within families suggested 
that genetic factors play a role in these otherwise unexplained disor­
ders without pinpointing the genes involved. In 2001, a rare patho­
genic DNA variation in FOXP2 was found to disturb development 
of the coordinated sequencing of mouth and face movements un­
derlying proficient speech (childhood apraxia of speech) in a large 
family known as the “KE family” (29) (Fig. 2A). Multiple indepen­
dent cases of people carrying FOXP2 disruptions have since been 
reported, with developmental speech deficits being the most con­
sistent consequence (30).

Once FOXP2 was identified in humans, researchers looked for ver­
sions of the gene in other species, retracing its evolutionary history. 
Cross-species DNA comparisons (Fig. 2B) revealed that FOXP2 is not 
specific to humans but is evolutionarily ancient, with similar versions 
in disparate vertebrates, including mammals, birds, reptiles, fish, and 
amphibians (26, 31). There is high species-wide concordance in the 
places where this gene is active in the developing or adult central 
nervous system, including in subsets of neurons in the cortex or pal­
lium, basal ganglia, thalamus, and cerebellum. These findings sug­
gested that contributions of FOXP2 to human speech may be built on 
ancient evolutionary pathways involved in motor-skill learning and 
vocal behaviors (32). Such deep evolutionary conservation means that 
genetic manipulations of versions of FOXP2 in nonhuman species can 
help elucidate its functions and how these influence brain plasticity 
and behavior (33–38).

For example, though mice have very limited VPL capacities (39), 
valuable insights were gained from mouse models engineered to carry 
FOXP2 disruptions known to cause speech disorders in humans (Fig. 2C). 
Mice carrying the pathogenic variant of the KE family show motor 
skill learning deficits and altered neuronal properties in basal ganglia and 
cortex (33–36), among other findings. Investigating nonhuman ani­
mals that are vocal learners, such as songbirds, is even more revealing 
(Fig. 2D). Male zebra finches sing structured songs comprising vocal 
elements (syllables) arranged in a stereotyped sequence, which they 
learn as juveniles by listening to adult males (37). During this devel­
opmental period of plasticity, FoxP2 (the avian version of FOXP2) has 
elevated activity in Area X, a basal ganglia structure that is crucial for 
VPL (37). Experimentally reducing FoxP2 Area X activity interferes 
with song learning and variability, potentially mediated by disturbed 
dopaminergic signaling (37, 38). Thus, impacts of this gene on brain 
plasticity linked to sensorimotor functions and motor skill learning 
may have been independently recruited toward VPL in disparate spe­
cies (i.e., supporting speech in humans and song in zebra finches). 
Most recently, genome-wide investigations of >200 mammals with 
different vocal-learning capacities pinpointed multiple additional ge­
netic loci as candidates for cross-species involvement in VPL (40).

Fig. 1. Gene-culture coevolution model. Interacting processes operating on  
different timescales, from milliseconds to millennia, shape language emergence.  
(A) Processes of language use operate at the shortest timescale, as individuals 
comprehend and produce utterances in ongoing conversation. Learning to form these 
utterances (learning sounds, words, and rules) happens over a lifetime of exposure to 
the language of the community. Zooming out further, the structure of a specific 
language emerges and changes through cultural evolution, as knowledge of language 
is passed from one generation to the next. Lastly, the cognitive and anatomical 
machinery that allows humans to learn and use language has been subject to genetic 
evolution over the course of human evolution. The processes of biological and cultural 
evolution interact to produce a dual-inheritance system (154). Features of languages 
are inherited culturally, and the mechanisms that support such cultural inheritance 
are themselves inherited genetically. These processes may interact in complex and 
interesting ways, studied using mathematical and computational models that include 
all three timescales: individual learning and use, cultural evolution, and biological 
evolution. (B) One prominent approach, iterated Bayesian learning (155), treats 
learning as a process of inductive inference, combining utterances that the learner 
observes with a prior bias favoring particular types of languages. Cultural evolution is 
modeled as a process in which the languages inferred by one generation provide data 
observed by the next generation of learners. Iterated Bayesian learning allows us to 
compute expected results of cultural evolution for any hypothesized prior bias 
learners might have along with a model of how language is used for communication 
(19). This approach has been extended to the full dual-inheritance model by assuming 
that priors for learners are shaped by their genes, and these genes are selected based 
on communicative effectiveness of the individuals in the population (156). One 
notable finding is that the existence of cultural evolution tends to weaken inductive 
biases in language learning (156). Cultural evolution amplifies weak biases in 
individual learners, such that weak biases have the same outcome at the population 
level as strong constraints would. If strong biases are costly to maintain (e.g., by being 
more subject to mutation pressure), then weak biases are the inevitable consequence. 
This is surprising given previous work on the evolution of learning, which suggests the 
opposite: that learning can make evolution of innate constraints more likely (157).
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Identifying genes contributing to VPL across species allows re­
searchers to use a transformative new data source to test hypotheses 
about language evolution: ancient DNA. In the past 15 years, it became 
possible to obtain high-quality sequence information from nu­
clear genomes of Neanderthals and Denisovans, extinct hominins 
that shared with modern humans a most recent common ancestor 
~600 kyr ago (41). These archaic hominins existed until a few tens of 
thousands of years ago, temporarily overlapping with H. sapiens at 
sites across Eurasia (42). Analyzing ancient genomes enables detection 
of DNA variants that arose in modern humans after our split from 
Neanderthals and Denisovans (43). It also enables detection of variants 
that we share with archaic hominins, but that are distinct from those 
in extant nonhuman apes. These more ancient variants arose after our 
split from the common ancestor of chimpanzees and bonobos ~6 million 

years (Myr) ago but before the split between modern and archaic hu­
mans (44). Applied to FOXP2, this approach identified two amino acid 
changes in the protein that it encodes, both arising on the Homo lin­
eage during the 6 Myr to 600 kyr time window (45). Researchers used 
genetic manipulations to introduce the hominin amino acid substitu­
tions into mice, observing varied effects on vocal behaviors and basal 
ganglia functions (46–49) (Fig. 2E). Thus, by identifying evolutionary 
variants in genes implicated in facets of language and introducing them 
into nonhuman animals, we can investigate whether these variants 
affect brains and behavior in ways that might be relevant to language 
emergence. Despite this promise, we stress that no single genetic change 
is, by itself, sufficient to yield a vocal-learning brain (50).

Evolution acts not only through genetically specified changes to 
protein structure and function but also by modifying where and when 

Table 1: Identifying genetic links to language through genomic studies in modern humans. Researchers can investigate genetics of relevant pathologies (childhood apraxia 
of speech, developmental language disorders, etc.) by identifying genetic correlates of individual differences in language-related skills in the general population, exploiting 
advances in molecular methods and analytic approaches.

Type of DNA 
variation Biological impact Molecular methods Typical study designs

Examples from  
the literature Linking to evolution

 Rare gene 
disruptions

Rarely, a change at a single 
genetic locus can be suffi-
cient to substantially derail 
language development.

Advances in next-
generation sequencing 
now allow rapid reading 
of almost all of a person’s 
genome at high resolution 
at a fraction of the cost of 
classical methods.

Pathogenic variants can be 
identified by analyzing DNA of 
relatives in multigenerational 
families where multiple indi-
viduals have a developmental 
speech and/or language 
disorder.

The first rare gene variants in 
childhood apraxia of speech were 
discovered by studying a three- 
generation family before the advent of 
next-generation sequencing (29).

The evolutionary history of 
genes implicated in speech 
and/or language disorders 
can be retraced by comparing 
to versions found in extinct 
archaic hominins and extant 
apes and testing for evidence 
of Darwinian selection at these 
genomic loci on the lineage 
leading to H. sapiens (177).

A complementary approach 
investigates de novo cases 
of disorder (where parents 
or siblings are unaffected) 
to identify pathogenic DNA 
variants that are only present 
in the affected child.

Whole-genome sequencing in 
speech apraxia has since identified 
pathogenic de novo disruptions of 
multiple candidate  
genes, with regulatory roles in early 
brain development (178).

 Common variation Many studies focus on  
single-nucleotide  
polymorphisms (SNPs) 
found at >1% frequency 
in the general population. 
Any one SNP by itself has 
little impact, but com-
binations of many such 
variants across the ge-
nome may jointly explain 
a significant proportion 
of trait variance.

High-throughput  
low-cost genotyping 
technologies, such as 
DNA microarrays, make 
it possible to capture 
allelic variation at 
millions of SNPs in large 
samples. These tech-
nologies fueled the rise 
of genome-wide associ-
ation studies (GWASs) 
that systematically 
screen vast numbers of 
SNPs, testing each for a 
relationship with a trait 
of interest.

One GWAS design is a case 
or control study assessing 
contributions of common DNA 
variation to a disorder  
(or categorical trait). GWAS 
designs can also identify 
associations of SNPs with 
individual differences in 
quantitative traits. Because 
the effect size of one SNP 
may be tiny, cohorts of tens 
(even hundreds) of thousands 
of people are needed to give 
adequate power while adjust-
ing for substantial multiple 
testing.

In a multicohort GWAS study of in-
dividual differences in quantitatively 
assessed reading- and language-
related skills involving <34,000  
participants, researchers could 
capture up to 26% of trait variability 
with common DNA  
variation (179).

Findings on genetic  
contributions to individual  
differences in language- 
related skills and/or neural  
infrastructure in living  
humans can be integrated  
with information about  
evolutionary signatures  
across the genome over a  
range of different time
scales in primate and hom-
inin history. For example, 
a UK Biobank study used 
this approach to uncover 
effects of human-gained 
regulatory elements on 
left-hemisphere  
brain regions related to  
speech, among other  
findings (180).

Studies of genetic associa-
tions with language-related 
traits can be extended 
to individual differences 
in brain structure and 
function, assessed with 
neuroimaging. Effect sizes 
of individual SNPs are small 
even for traits measured with 
magnetic resonance imaging 
(181). With availability of 
neuroimaging and DNA data 
in large biobanking resources, 
it is now possible to carry 
out GWAS studies of neural 
circuits involved in language 
processing.

GWAS investigations  
of structural and  
functional connectivity  
in the brains of ~30,000  
to 32,000 participants  
in the UK Biobank have 
given new insights into  
how genetic variants  
contribute to language- 
related circuits in the  
human brain [e.g. (182)].
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genes or proteins are active in development and adulthood (51). These 
effects are mediated by a wide variety of regulatory elements in the 
genome. Many of the DNA variants distinguishing us from other extant 
apes and extinct hominins may lie within such elements. For example, 
among primates, FOXP2 shows human-specific expression in microg­
lia, the primary immune cells of the brain, although the regulatory 
elements responsible for this specificity are not yet described (52). 
Moreover, innovations in paleoepigenetics take advantage of degrada­
tion processes in ancient DNA to reconstruct patterns of methylation, 
a chemical modification that helps mediate changes in gene activity 
without changing DNA sequence itself. This approach revealed changes 
in gene regulation differentiating Neanderthals and/or Denisovans from 
modern humans (53). Several of the identified modern human-specific 
gene expression changes are associated with genes that affect the face 
and voice and may underlie characteristics that are specific to modern 
humans (54).

Additional insights into VPL evolution come from considering de­
velopmental processes. Take babbling, an early, self-initiated form of 
vocal production in infants that starts as simple and repetitive verbal 
“play” but gradually approaches a mature form. Babbling-like behav­
iors have been documented in humans, songbirds, parrots (55, 56), and 
vocal-learning bats (57) but are not common in species lacking VPL. 
Manual “babbling” is seen in hearing and deaf human babies exposed 
to signed language from birth (58), illustrating both the multimodality 
of language and the role of babbling in language acquisition. Deaf 
babies also babble vocally, but this babbling does not progress nor­
mally when appropriate input models are inaccessible (59), demon­
strating how biological preparedness and environmental input interact 
in language learning.

Babbling (termed “subsong” in birds) is self-generated and self-
rewarding, occurring without immediate environmental triggers or 
exogenous rewards. Thus, part of the biological preparedness for VPL 

Protein-coding changes
in hominin evolution

Intracellular differences in striatal neurons
Reduced striatal plasticity
Impaired motor-skill learning
Variable effects on vocalisation

Wild-type
littermate

C  Introduce pathogenic variant

Pathogenic
variant

vs

Imbalanced dopamine receptor activity
Alterations in song learning and song 
variability

D  Reduce FoxP2 activity

Reduced
FoxP2
activity

vs

Alterations in dopamine levels
Increased striatal plasticity
Shifts in striatal-dependent learning
Variable effects on vocalisation

Wild-type
littermate

E  Introduce humanized variant

Humanized
variant

vs

ANIMAL MODELS

I

II

III

De Novo

Comparing FoxP2 across primatesA B

Fig. 2. Investigating evolution of vocal production learning with tools of molecular genetics: FOXP2 as an example. (A) The starting point was a three-generation family, 
the KE family, in which half of the relatives (shaded symbols) were affected by a neurodevelopmental disorder primarily involving childhood apraxia of speech, accompanied by 
expressive and receptive language deficits (top). The affected relatives carried a change of one DNA letter (nucleotide) in the FOXP2 gene (29). This small change in DNA alters  
the amino acid sequence and, hence, the shape of a key part of the regulatory protein that FOXP2 encodes, stopping it from functioning in its normal way. Advances in DNA 
sequencing led to identification of >28 additional individuals (from 17 families) carrying different pathogenic single-nucleotide variants of FOXP2, with problems in speech 
development being the most common feature found in these cases (30). As shown in the bottom of the panel, although pathogenic variants were sometimes inherited from 
affected parents, in many of the cases, they arose de novo in children with unaffected parents. (B) Comparisons of DNA sequences across different species (comparative 
genomics) identified versions of FOXP2 in distantly related vertebrates, including mammals, birds, reptiles, fish, and amphibians (26, 31), showing that the gene has a deep 
evolutionary history. Against this background, integration of findings from extant apes and extinct archaic hominins revealed that changes in the amino acid sequence of the 
encoded protein occurred on the Homo lineage after splitting from the common ancestor of chimpanzees and bonobos (45). (C) Researchers engineered mouse models that 
carry the same pathogenic variant that causes speech problems in the KE family. Investigations of these mice reported motor skill learning deficits (33), reduced plasticity in the 
striatum (part of the basal ganglia) (34), disturbed intracellular “protein motors” in striatal neurons (35), and loss of neuronal homeostasis in deep-layer cortical neurons (36), 
among other findings. (D) Moving to songbirds, lentivirus-mediated RNA interference has been used to reduce activity of FoxP2 (the avian equivalent of FOXP2) in Area X, a key 
nucleus in the basal ganglia of male zebra finches. Such studies uncovered effects of the gene on song learning and the control of song variability, potentially mediated by 
changes in dopaminergic signaling (37, 38). (E) When researchers used genetic manipulations to introduce hominin amino acid substitutions of FOXP2 into mice, they observed 
regional changes in dopamine levels and increased plasticity in the striatum (46). Motor skill learning and vocal behaviors of adult male mice were unaffected according to one 
study (47), but later investigations of female and male vocalizations in social contexts found that the partially “humanized” mice used higher frequencies and more complex 
syllable types (48). Another study of these mice uncovered different patterns of striatal-dependent stimulus-response association learning (49). Overall, this suite of human and 
animal model studies shows how genes involved in VPL can be empirically investigated across species to give new insights into evolutionary pathways.
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includes an endogenous reward system, making vocal play enjoyable 
to the young organism without feedback from parents or others. 
Although little is known about the underlying circuity in humans, 
recent evidence implicates endogenous reward in songbird vocal be­
haviors. Avian song learning begins with a sensory learning period in 
which the bird stores auditory templates of exemplars of its species’ 
song. This involves an endogenously rewarding listening process: 
Juveniles selectively attend to and memorize songs of their own spe­
cies, indicating that hearing them is intrinsically rewarding (60). 
Endogenous reward is key during the subsequent sensory-motor learn­
ing period, when spontaneous subsong is gradually adjusted, without 
external feedback, to approach stored adult template(s) (61–64). Vocal 
practice correlates temporally with neural expression of opioid mark­
ers and increased activity in reward systems (61), and blocking dopa­
mine receptors in the basal ganglia in young zebra finches impairs 
song copying (63). Later in development, both infant babbling and 
bird subsong are impacted by social reinforcement (see case study 3), 
but the early self-reinforcing stages are required to provide raw mate­
rial for later, exogenously directed, learning. Evolution of VPL may 
therefore depend both on changes to neural circuits involved in learn­
ing and on those underlying endogenous reward.

Case study 2: The emergence of linguistic structure
Human language shows systematic structure at multiple levels and of 
multiple kinds. Elements can be combined in productive ways, with 
the meaning of larger units composed of the meanings of their parts 
(e.g., “cat,” “cats,” “big cats”). There is ongoing debate on how to define 
and quantify this systematicity. In this case study, we classify a behav­
ior as systematic when it can be described more concisely as a set than 
as a collection of individual instances. “Grammars” in linguistics (in 
the most theory-neutral use of that term) refer to these shorter descrip­
tions and are possible because language is systematic. For example, it 
is more concise to describe formation of the regular English plural 
using the rule “add -s to the singular form” than to list all plural forms. 
Although prevalent in human language, systematicity is rare in the 
vast majority of communication systems in nature. An extensive litera­
ture investigates neural correlates of systematic language structure 
[see (23, 65)]; comparing those circuits across humans and nonhuman 
primates offers ways to study their evolution [e.g., (66–68)]. Though 
illuminating, current literature leaves open how linguistic structure 
first came about.

Over the past 25 years, various experimental and computational 
methods have been developed to study origins of systematic linguistic 
structure (17, 69–71) and ask how that structure is shaped by cognitive 
and communicative pressures. Specifically, language must serve the 
communicative needs of interacting language users and be learnable 
by subsequent generations of language users. Because language is 
culturally transmitted (passed on by being repeatedly learned and used 
by multiple generations), its structure is impacted by the interplay of 
communicative and cognitive forces. To demonstrate, we here focus 
on one feature: combinatoriality, the fact that language has units that 
can be recombined, at multiple levels of linguistic analysis (19, 72, 73). 
For example, sounds can be combined into words, and words can be 
combined to form sentences.

How did this combinatoriality emerge? We have no access to or 
record of hominin communication systems preceding modern human 
languages. However, insights can come from real-world cases of emer­
gence (74) and lab-based studies recreating evolutionary processes in 
miniature (20, 75, 76). Two real-world settings illuminate the pressures 
and biases impacting the emergence of linguistic structure in modern-
day humans. One is homesign, gesture systems created by individuals 
whose hearing loss prevented them from accessing spoken language 
and who were not exposed to sign language (77). Another is emerging 
sign languages, where new signed languages develop in communities 
with a high proportion of deaf individuals, lacking access to an 

established signed language. An influential example is Nicaraguan 
Sign Language (NSL), which spontaneously emerged when homesign­
ers were first brought together in the mid-1980s (78). Examining how 
linguistic structure in such systems changes over time demonstrates 
how individual learning and cultural transmission impact the emer­
gence of structure.

Researchers have documented and compared linguistic structure 
in solo language creators (homesign), homesigners who came together 
and formed the first NSL cohort (NSL1), and subsequent cohorts of 
signers who entered the community after the language began and were 
thus exposed to a language model (NSL2, NSL3, etc.). Some linguistic 
structural properties are observed in solo creators, irrespective of the 
specific cultural environment they were raised in. Child homesigners 
in the US, China, Turkey, and Nicaragua use gestures to refer to objects, 
actions, and attributes and combine them into strings characterized 
by consistent word order. For example, gestures for the object of an 
action appear before gestures for the action, yielding “grape-eat” as 
opposed to “eat-grape” (77, 79) (Fig. 3). These same properties appear 
across societies, without exposure to linguistic input, indicating shared 
human cognitive biases [e.g., hierarchical structure (80)]. Other prop­
erties emerge only after homesigners came together to form NSL1 [e.g., 
a stable lexicon (79)], highlighting the importance of communication 
with others in shaping linguistic structure. Still other linguistic proper­
ties are not produced by homesigners or in NSL1 but tend to appear 
only after the emerging sign languages are transmitted to new learn­
ers. For example, spatial modulations are rare in NSL1 but commonly 
used to indicate shared reference in NSL2 (14).

A well-studied feature of NSL, relevant to combinatoriality, involves 
how complex motion events are conveyed. Consider a ball bouncing 
down a hill. In early NSL cohorts, both the ball’s path (downwards) 
and its movement manner (bouncing) are typically conveyed simulta­
neously [(78) but see (81)]. However, later cohorts typically segment 
path and manner into separate parts, yielding a more combinatorial 
flexible system. Thus, transmission from one cohort to another seems 
important for building and enhancing combinatoriality. In an experi­
mental analog of the homesign situation, nonsigning participants are 
asked to convey meanings with gesture and no speech (82). When 
presented with complex motion events possessing manner and path 
components, participants prefer to convey both aspects simultaneously 
even if expressed separately in their spoken language (83). However, 
gestures and vocalizations beginning as holistic (e.g., simultaneously 
expressing motion and speed) become more segmented and linearized 
during ongoing dyadic communication (84, 85).

Experiments can recreate processes of cultural evolution using a 
paradigm called iterated learning. In these studies, a participant learns 
from the output of a previous participant in the experiment, creating 
multiple simulated “generations” (17). When silent gestures get trans­
mitted in this way, there is a learning-driven preference for segmented 
manner and path. This preference is amplified over generations [as in 
NSL2 (78)] so that more systematic and combinatorial behaviors 
emerge (84, 85). More generally, productive units emerge during 
dyadic and group communication paradigms (20, 86, 87), a process 
enhanced by learning and transmission (88). The combined findings 
demonstrate that systems starting as a collection of wholes are gradu­
ally segmented and analyzed into productive parts, consistent with 
evolutionary approaches that propose a holistic origin for language 
(89, 90). Further evidence for the role of whole-to-part learning comes 
from first language acquisition (91) and homesign creation (92), where 
learners discover parts from unanalyzed wholes [e.g., “Ididit” > “I did it” 
(93)] in ways that facilitate the mastery and emergence of systematic 
structure (Fig. 3) (94, 95).

Real-world language emergence and lab-based studies necessarily 
involve humans with modern brains but are nevertheless informative. 
Linguistic features evident in homesign provide insights into products 
of biological evolution. Properties that homesigners fail to develop but 
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are found in emerging sign languages are good candidates for ones 
that require cultural evolution to emerge (15). With lab-based studies, 
researchers can manipulate communicative and cognitive pressures 
in ways that cannot be done in the real world to assess effects on 
emerging systems. Moreover, computational simulations, not yet dis­
cussed [but see Fig. 1 and (96, 97)], allow investigation of learning 
biases that may differ from those of modern humans. Notably, it is still 
an open question of which, if any, capabilities underlying language 
structure are distinctly enhanced in humans. One component hypoth­
esized as highly developed in humans and weak or absent in other 
species is “dendrophilia,” a domain-general proclivity to infer tree 
structures from data whenever possible (98) (Fig. 4).

So far, we have demonstrated impacts of learning, communication, 
and cultural transmission in creating combinatorial structure in hu­
mans who are already biologically prepared for language. Roles of bio­
logical evolution can be investigated by using animal models. In this 
case, researchers control preparedness through the choice of species 
while experimentally manipulating social pressures and rewards. Two 
relevant models are songbirds and baboons, who differ from humans 
and each other in important ways. As introduced in case study 1, 

songbirds are vocal production learners with cul­
turally transmitted song (99, 100). Songbirds are 
also among the few nonhuman animals whose 
signaling exhibits combinatorial structure. Songs 
are constructed from individual elements that are 
repeated and recombined (101). Despite their 
“instinct to learn” a species-typical song (102), 
isolated songbirds deprived of appropriate input 
sing only a harsh, atonal “isolate song” (101). 
When isolate songs are transmitted to successive 
generations of learners through iterated learning, 
zebra finches converge within a few generations 
on a new (albeit well-formed and species-typical) 
song exhibiting combinatorial structure (103). 
Even if this developmental process is limited to 
one bird hearing its own songs played back after 
a delay, a more species-typical song results (104). 
Transmission over generations or iterations 
seems crucial for the emergence of elaborated 
species-typical structure, whether the starting 
point is isolate song in vocal-learning birds or 
homesign in humans.

Songbirds are biologically prepared to learn 
and transmit songs. By contrast, despite powerful 
learning abilities (105), nonhuman primates 
largely lack culturally transmitted communica­
tion systems, and the combinatoriality of their 
gestural signaling is not as productive or wide­
spread as in humans or songbirds (106). Recent 
evidence indicates a degree of combinatoriality 
in vocalizations of some ape or primate species 
[e.g., (107, 108)], though it is unclear whether they 
are used communicatively. Experiments with cap­
tive baboons suggest that systematically struc­
tured behavior can emerge in animals lacking it 
if cultural transmission is supported externally 
(109). In these studies, baboons are given exoge­
nous rewards for reproducing randomly gener­
ated visual patterns. Cultural transmission is 
experimentally simulated by providing patterns 
from one baboon as input to another, creating an 
iterated learning design. Notably, systematically 
structured patterns emerge over iterations: 
although baboons lack biological preparedness 
for cultural transmission, when transmission is 

supported externally, structured patterns emerge. These experiments 
demonstrate that adding exogenous rewards for copying behavior 
(present endogenously in humans and songbirds) facilitates the emer­
gence of systematicity.

Case study 3: Social underpinnings of language
Social interactions are key for first language acquisition, with indi­
vidual learning typically occurring within interactive contexts 
(110, 111). These interactions provide children with valuable linguistic 
input, facilitating learning in various ways (112). Although infants can 
learn in noncommunicative settings and do so in experimental con­
texts (113, 114), many aspects of language learning are facilitated by 
social interaction (112). For example, contingent maternal responses 
yield more mature vocalizations in human infants (115). Similarly, 
learning of non-native phonetic sounds in infancy is enhanced by social 
interaction (116). Both homesign and emerging sign languages (case 
study 2) are motivated by the need and desire for social communica­
tion [although in homesign, the communications systems themselves 
are not shared with others (117)]. Later in development, there is evi­
dence of bidirectional links between language abilities and aspects of 

Fig. 3. Finding the right units. One of the challenges in studying communication in children and nonhuman 
animals is zeroing in on the right unit of analysis. This is challenging because the units we use to code data are 
influenced by hypotheses [explicit or implicit (158)], often based on our own categories. For example, when we 
describe early child language, we typically attribute individuated words to the child (left). But we might be 
wrong; a child might use a larger unit, treating several words as a single “chunk” (91, 159). Infants extract single 
word units from the speech they hear, but they also extract larger units containing more than one lexical word 
(91, 93). In fact, starting from larger units plays an important role in learning linguistic structure, particularly in 
learning grammatical relations between words (91, 94, 95), and in creating linguistic structure (92). One way to 
validate the categories we use is to find systematic patterns based on those categories, providing indirect 
evidence for the categories and also for their level of representation. For example, using semantic roles (patient, 
act, recipient, etc.) to categorize homesigners’ gestures results in systematic orderings (patient-act, 
patient-recipient, and act-recipient), which validates coding at this level (160). But sometimes our coding 
system fails to produce systematic patterns. This may be the time to scrap the system and start again, coding at 
a level smaller than the one previously used (middle). For example, homesigners could vary thumb-to-finger 
distance so that the handshape in the gesture for banana grasping is distinct from that in the gesture for spoon 
grasping (as they are when these objects are actually grasped). Alternatively, homesigners could use the same 
handshape in both gestures, introducing one larger category for grasping objects <1 inch in diameter. To 
discover the homesigner’s categories, we need to code in units that are smaller than the units on which those 
categories are based; otherwise, the categories may be created by us, not the child (161). When we seek the 
right units in nonhuman communication [e.g., gestures in great apes (162)], the challenge is greater because we 
have limited insight into the categories relevant to nonhuman animals (163) and must validate the categories in 
the animal itself [e.g., by using playback experiments, (164)]. Nonetheless, the approach of seeking out 
coherent patterns can also help reveal units in animal communication (right). For example, using transitional 
probabilities (TP) between syllables to segment humpback whale song [a cue used by human infants to 
segment speech (113)] uncovered statistically coherent subsequences whose frequency distribution followed a 
particular power law also found in all human languages (165). This points to a notable similarity between two 
evolutionarily distant species (whales and humans), united by having culturally transmitted communication 
systems. Debates about how to detect the appropriate units continue (166), with new perspectives coming from 
machine learning (167). In general, allowing for units at multiple levels of representation provides insight into 
structure in child language, homesign, and animal communication (168).
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social cognition or interaction (118–120). Gains in prosocial behaviors 
in early childhood (age 3 to 5 years) are significantly associated with 
later gains in verbal ability (age 5 to 11 years), and vice versa (121). 
Better language skills facilitate children’s social–emotional compe­
tence, allowing formation of more prosocial, cooperative relationships 
(121–124). Conversely, language difficulties often associate with in­
creased difficulty with social interactions (125, 126).

Social interaction contributes to individual learning in other species 
with culturally transmitted communication systems. Although we 
stress the importance of endogenous reward during early birdsong 
acquisition, exogenous reinforcement from social partners is crucial 
in later learning, maintenance, and modification of song (127, 128). 
Female cowbirds provide behavioral feedback (wing flaps) to courting 
males, influencing later use of particular syllables or syllable sequences 
(127). When parent zebra finches give behavioral feedback, juveniles 

develop more accurate copies of tu­
tor song (128). Exogenous reward of 
vocal learning involves dopaminer­
gic systems (129,  130). Socially 
tutored zebra finches show higher 
activity of dopaminergic neurons in 
the ventral tegmental area com­
pared with that of birds who pas­
sively heard songs or untutored 
controls (129), and optogenetically 
blocking dopaminergic input to 
song circuits during social tutoring 
impairs song learning (64).

Beyond social underpinnings, 
which enable cultural transmission 
of language, humans have a strong, 
unparalleled internal drive to socially 
share information, including about 
inner states, emotions, and ideas using 
language [“Mitteilungsbedürfnis” 
(2)]. Sharing for sharing’s sake is 
prevalent in humans but rare in 
nonhuman primates. Even language-
trained apes, who master aspects of 
human sign language, show limited 
interest in using this to express 
things other than direct requests 
(131, 132). By contrast, our drive to 
share thoughts and feelings with 
others is so strong that humans cre­
ate a communication system de 
novo even if one is not available 
(case study 2).

The social context together with 
our “mitteilungsbedürfnis” make 
language learning and use reward­
ing for humans. How might the 
evolution of reward mechanisms 
relate to emergence of communica­
tion systems? One evolutionary 
pathway of potential relevance is 
the process of domestication. The 
Bengalese finch, a domesticated 
variant of a wild songbird, the white-
rumped munia (133–136), offers an 
example of relationships between 
changes in reward and communica­
tion systems. As in many domesti­
cates, stress hormone levels are 
significantly lower in Bengalese 

finches compared with that in munias (135), and the former display 
less aggression (134) and explore new environments faster than their 
wild counterparts (136). Notably, Bengalese finches produce songs with 
greater phonological and syntactic complexity than those of munias 
(137). They are capable of learning munia songs, whereas munias 
struggle to master Bengalese songs (133). Domesticated Bengalese 
show higher concentrations of cerebral oxytocin than their wild ances­
tors (138, 139); oxytocin and dopaminergic reward systems are known 
to be closely interconnected (140, 141).

Did humans follow evolutionary pathways similar to those underlying 
animal domestication, where less aggressive individuals that were 
more prone to cooperatively interact had a greater likelihood to survive 
and/or reproduce? According to the human self-domestication hypothesis, 
such processes enhanced social learning and cultural transmission 
in humans (142–144). This could generate virtuous cycles at the 
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Fig. 4. The origins of hierarchical structure: Dendrophilia or semantics? An open question for the field concerns which, if 
any, capabilities underlying language are specifically enhanced in humans. One component hypothesized as highly developed in 
humans and weak or absent in other species is “dendrophilia,” a domain-general proclivity to infer tree structures from data 
whenever possible (98). Dendrophilia combines a domain-general capacity to perceive hierarchical structures in stimuli with a 
strong preference to encode data into hierarchical structures. (A) This preference is often studied using Artificial Grammar 
Learning (AGL) experiments, where learners are exposed to sequences of stimuli whose appearance is governed by an underlying 
hierarchical grammar. If learners deduced the grammar, then they should be able to complete sequences in a way that conforms 
to it. Considerable experimental evidence from cross-species AGL research supports dendrophilia as being both highly developed 
and biologically canalized in humans and reduced or absent in other species studied to date (4, 169, 170). For example, a recent 
study found that, with adequate time and a consistent exogenous reward structure, macaque monkeys can learn hierarchical 
structures based on meaningless spatial or motor sequences, but learning required many months and tens of thousands of 
rewarded trials. By contrast, preschool children learn these same systems rapidly, in as few as six trials, with few or no errors 
(170). The presence of some hierarchical structure in homesign (case study 2) offers further evidence of biological preparedness 
for dendrophilia in our species (80). However, the finding that linguistic structure emerges gradually over generations indicates 
that cultural transmission is important for explaining hierarchical structure in fully developed languages (as for birdsong). Some 
precursor(s) of dendrophilia may be present in the motor and/or social domain in other primates, such as the perception and 
processing of complex dominance hierarchies, as shown in baboons and other socially complex species (171, 172). (B) The 
problem of acquiring and using treelike structures may be greatly reduced in contexts involving signal or meaning pairs (as in 
human language). If semantics already possess hierarchical structure and signals are mapped onto this hierarchical meaning 
space, then it may strongly bias the learner to impose or perceive tree structure in the signals themselves. Notably, the existence 
of hierarchical structure in human music [e.g., (173)] or similar systems, such as bird or whale song [e.g., (174)], where signals do 
not map onto highly structured meanings, suggests that compositional semantic mappings are not necessary (or solely 
responsible) for hierarchical structure to emerge. Similarly, in AGL experiments, humans readily perceive hierarchical structure in 
meaningless visual strings (175, 176). Better understanding of the neural mechanisms involved in structural learning and 
innovative new methods to “tweak” reward structures in animals can shed light on origins of hierarchical structure not just in 
language but also other domains, such as music and art.
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community level: Increased social reward for communication favors 
emergence of more advanced forms of communication, enabling larger 
in-groups and more interaction with nonkin, which results in even 
richer social interaction. Some support for links between greater com­
municative complexity and greater social complexity (operationalized 
by larger group sizes, more dense networks, etc.) comes from multispe­
cies comparative research, from bats to primates (145, 146). Human 
experimental data provide suggestive evidence: Artificial languages 
evolving in larger microsocieties of interacting participants show more 
systematic compositional structures, emerging faster and more con­
sistently than in smaller groups (20).

Discussion
Our case studies include diverse data sources (behavioral, neural, ge­
netic, and developmental) and adopt broad comparative perspectives, 
with particular focus on humans, primates, and songbirds. They dem­
onstrate how facets involved in language emergence can be insightfully 
studied in nonhumans. No single method, tool, or model holds all the 
answers, and investigations of different facets may require different 
approaches. A common thread is that exaptation and recombination 
of abilities present in nonhumans, combined with intra- and intergen­
erational cultural transmission, can yield linguistic capacities in our 
own species. VPL, crucial for acquiring spoken language in humans, 
is a capacity that humans share with other species, appearing in di­
verse branches of the vertebrate evolutionary tree. Social underpin­
nings needed for human language transmission are documented in 
other species with culturally transmitted systems, but humans also 
demonstrate communicative tendencies rarely observed in nonhuman 
animals (e.g., our “mitteilungsbedürfnis”). Emergence of linguistic 
structure, a defining property of human language, involves a combina­
tion of biological, cognitive, and cultural conditions: Although some 
(or all) conditions are shared with various nonhuman species, the 
combination may be specific to humans.

The case studies demonstrate the value of explicit biocultural fram­
ing, showing how language emerges dynamically at three distinct but 
interacting levels: the individual (language acquisition and use), the 
community (cultural evolution and historical language change), and 
the species (biological evolution). The human ability to acquire and 
use language as well as languages themselves result from multiple 
interactions over time and among these levels, making all three im­
portant for understanding language emergence. Biological evolution 
generates the biological preparedness to acquire language shared by 
all human infants. Through individual learning in a social setting, the 
child acquires the language(s) of their community, which themselves 
develop through dynamic processes of cultural evolution. The ways in 
which these distinct levels interact, constrain, and structure one an­
other can be nonintuitive. Understanding them requires combinations 
of data, models, and experiments.

A recurring theme and promising avenue for future research is the 
role of biological reward systems in language evolution. These systems 
include the motivation to communicate and both endogenous and 
exogenous reward for successful imitation and communication during 
language acquisition, use, and transmission. Although it is currently 
impossible to “insert” endogenous rewards for babbling into species 
that lack them, we can experimentally block such rewards, as shown 
for songbirds [case study 1 (63)]. Further, we can experimentally in­
troduce exogenous rewards to trigger learning in species that lack 
endogenous reward systems for the learned behavior; potentially “un­
masking” cognitive capabilities that were previously unexpressed in 
that species, as in baboon studies [case study 2 (147)]. These experi­
ments can empirically circumvent the common criticism that investi­
gating modern humans, who are already biologically prepared to 
acquire language, reveals nothing about how key facets evolved.

An open issue concerns modality. Like many researchers, we see 
language as inherently multimodal (22), and our case studies consider 

both spoken and signed languages. However, we have not discussed 
possibilities that the use of visual and auditory modalities may 
emphasize different types of structure. Because gestural capabilities 
of apes greatly exceed their vocal flexibility, some researchers have 
suggested that human language origins may be found in gesture and/or 
sign (“gestural protolanguage”) rather than speech (148, 149), whereas 
others vehemently deny this (150, 151). The multifaceted biocultural 
framework combined with data showing that, like humans, primates 
are multimodal communicators (152, 153) strongly suggest that gesture 
coexisted with vocal communication, and eventually language, all 
along. Furthermore, vocal-learning abilities might have already been 
enhanced in archaic hominins, such as Neanderthals (case study 1), al­
though they likely lacked fully modern language. Thus, asking whether 
sign or speech came first is the wrong question. Productive future debate 
should center on how gesture and speech support one another and why 
language (unlike, say, birdsong) is flexible enough to be conveyed by 
radically different sensory systems.
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